
AD-A263 554

Research Product 93-04

Models of Morse Code Skill Acquisition:

Simulation and Analysis

".DTIC

•ELECTE f
MAY 0 4 1993

93--09363

february 1993

Automated Instructional Systems Technical Area

Training Systems Research Division

U.S. Army Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution Is unlimited.



U.S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction

of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Acting Director

Research accomplished under contract

for the Department of the Army

Battelle Memorial Institute, Inc.

Technical review by

Mark A. Sabol
Robert A. Wisher

NOTICES

FINAL DISPOSITION: This Research Product may be destroyed when it is no longer needed.
Please do not return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: This Research Product is not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.



"-.- Form Approved
REPORT DC WMENTATION PAGE i OMB N 04-0188

PIOIIC recitonng ourden for this collecioon Of inf lOrt n is estimated to a.erage 1 hrour per resoonse. irtluc .- the time lot r•viewing instructions searn-.r- .V. It ti, alt.. $,rel
&arne flng&o mar/inalnnlglg the data needeo. and conaotieng ana reviewing the 4Olecneon of ntorrrralon Send comments reoawang •ni% owsoen estlmat- :r in, ,inlet JS)C Ct 1.r

coliection of ionvormafonm, uCing suggeston% tot reaucing trins Droefn t:' h3shington ,eaoquarlef', Ser.ces. Drectorate for information Ooe&at Onl, .nfd R.CI s !1 efti,,i
Oars1 migniwai, Ste 1204. Arlington, VA 22202-4302. and t1 tre Office of Management and Budget. Paperwot. Reducton Project (0704-0185). Washington. OC OSJ3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1993, Februar7 Final Jun 91 - Dec 91
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Models of Morse Code Skill Acquisition: Simulation and DAAL03-91-C-0034
Analysis 62785A

791
6. AUTHOR(S) 3302

Fisher, Donald L., University of Massachusetts, and HI

Townsend. James T., Indiana University

7. PERFORIMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Battelle Memorial Institute, Inc. REPORT NUMBER

Research Triangle Park, NC

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING

U.S. Army Research Institute for the Behavioral and AGENCY REPORT NUMBER

Social Sciences ARI Research Product
ATTN: PERI-II 93-04
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

11. SUPPLEMENTARY NOTES

Contracting Officer's Representative, Robert A. Wisher

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The simulation described in this report predicts details of performance for
students learning to copy Morse code at high speeds of transmission. Specifically,
the model predicts the probability of a correct response, an incorrect response,

a period (no guess) response, no response, and a correct response for each of the

five serial positions in a group. The simulation also predicts the time it takes

to execute both a correct and incorrect response and the time it takes to execute
a period response. The model was derived from a cognitive analysis of the

information processing demands on students and modeled with order-of-processing
diagrams. A preliminary test was conducted with response data from students at the
U.S. Army Intelligence School, Fort Devens, Massachusetts.

14. SUBJECT TERMS 15. NUMBER OF PAGES

.Skill training Cognitive models 110
Order of processing Short term memory 16. PRICE CODE
Information processing Morse code

"17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTPACT

Unld.iificd Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

i Preuribed by ANSI Sid 139SI-



Research Product 93-04

Models of Morse Code Skill Acquisition:

Simulation and Analysis

Donald L. Fisher
University of Massachusetts

James T. Townsend
Indiana University

Automated Instructional Systems Technical Area
Robert J. Seidel, Chief

Training Systems Research Division
Jack H. Hiller, Director

U.S. Army Research Institute for the Behavioral and Social Sciences
5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

Office, Deputy Chief of Staff for Personnel
Department of the Army

February 1993

Army Project Number Manpower, Personnel, and Training
2Q162785A791

Approved for public release; distbution is unlimited.

iii



FOREWORD

To ensure that the U.S. Army's soldiers acquire the skills
and knowledge necessary to perform their jobs successfully, the
U.S. Army Research Institute for the Behavioral and Social Sci-
ences (ARI) performs behavioral research to develop methods of
training that can improve skill acquisition. Morse code copy
training is one skill area that continues to challenge the re-
search community to identify training strategies that can alter
the training attrition pattern, particularly during the speed
building phase.

This report describes a quantitative model that simulates
the perceptual-motor skill responsible for successful Morse code
copy. This model will allow detailed characteristics in the
underlying human information processing mechanics to be simulated
and compared to actual performance. Further application of this
model might enable the "at-risk" students to be identified early
in the speed building phase of training and thus designated for
specialized training. In general, this research adds to our
understanding of the acquisition of skilled performance.
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MODELS OF MORSE CODE SKILL ACQUISITION: SIMULATION AND ANALYSIS

EXECUTIVE SUMMARY

Requirement:

The U.S. Army Intelligence School at Fort Devens (USAISO)
has been experiencing an unacceptably high rate of attrition.
(The attrition rate was recently reduced after the introduction
of a new training device.) The Assistant Deputy Chief of Staff
for Training, HQ Training and Doctrine Command (TRADOC), re-
quested that the U.S. Army Reseaý:h Institute for the Behavioral
and Social Sciences (ARI) examine the problem and pursue a course
of research that could lead to a reduction in the attrition rate.
The simulation and analysis of performance and models to differ-
entiate between successful students and attrites were important
steps in the approach.

Procedure:

In a briefing to HQ TRADOC, a cognitive process model of the
Morse copy skill was proposed as a means to understand the intri-
cacies of the skill. An elaboration of this model was briefed to
USAISD staff. Through a contractual arrangement with the U.S.
Army Research Office, researchers developed simulation models
that applied tools in queuing networks and order-of-processing
diagrams to the task of a student learning to copy Morse code at
progressively faster speeds.

Findings:

A simulation model was derived from a cognitive analysis of
the information processing demands on students and modeled with
order-of-processing diagrams. Various assumptions about the
"copy behind" phenomenon--not responding until a subsequent char-
acter is presented--were made. The model predicts the probabil-
ity of a correct response, an incorrect response, a period (no
guess) response, no response, and a correct response for each of
the five serial positions in a group. The simulation also pre-
dicts the time it takes to execute both a correct and incorrect
response and the time it takes to execute a period response. A
preliminary test was conducted with response data from students
at the U.S. Army Intelligence School, Fort Devens, early in the
speed building phase of training. The models fit the observed
data quite well, with only the predicted response times for
incorrect responses much different from the observation.
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Utilization of Findings:

These models will be tested with data from students who
either acquired the skill rapidly or attrited during the speed
building phase. This will establish whether response patterns
early in the speed building phase can distinguish the quick
learners from the likely attrites. These findings, in turn, will
be presented to USAISD for consideration in identifying students
for specialized training.
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MODELS OF MORSE CODE SKILL ACQUISITION:
SIMULATION AND ANALYSIS

INTRODUCTION

Background

The U.S. Army Intelligence School at Fort Devens, Massachusetts, trains

Morse code copying to about 1,000 individuals per year from the four armed

services. The goal is to train military personnel to copy Morse characters at

the rate of 20 groups per minute (gpm; 1 group equals 5 characters) with 96

percent accuracy. The training has historically had a high rate of attrition,

at times over 30 percent (DOES, 1990). For those who succeed in the basic

Morse course, the training time has a wide degree of individual variability,

ranging from 200 to 1180 hours to achieve proficiency. By far, most training

time is spent in the speed building phase where students try to progress in-

crementally from 6 gpm to 20 gpm. Since attrition is most likely to occur

during speed building and well into the training program, its effect can be

costly.

Although the learning of Morse code has long been a topic of research in
psychology (Bryan and Harter, 1897), the high training attrition persists.

The learning of individual Morse characters is fairly straightforward, but the

ability to copy groups of characters accurately at increasing rates of trans-

mission is difficult to master for many individuals, even after hundreds of

hours of Dractice. It is this difficulty in being unable to progress to a

higher speed, not the lack of motivation or practice, that leads to the costly

attrition.

The copy task requires listening to a sequence of Morse code characters

(each character is itself a sequence of dahs and dits) and responding with the

corresponding character on a standard keyboard. The ability to copy Morse

code characters during rapid rates of transmission (100 characters per minute)

is clearly demanding. To copy at speeds approaching 20 gpm burdens the under-

lying cognitive processes, pushing relevant memories to their limits. It

requires the simultaneous processing of different stimuli, frequently respond-

ing to one character while another is being perceived. Perhaps the memory

capacity of some operators is exceeded, or perhaps the concurrent processing
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abilities of other operators are pushed too far. Present-day computer technol-

ogy and theoretical frameworks for modeling cognitive processes suggest that a

closer study can be made of the development of proficiency during speed build-

ing than was previously possible. The results of this more extensive analysis

can then lead to prescriptions for overcoming the persistent training barrier.

A closer study of the development of proficiency during speed building

requires a detailed understanding of how accuracy and response time change as

a function of the rate of presentation (groups per minute); the serial posi-

tion of a character within a group; the serial position of a character within

a block; the identity of a character; the confusability of each character with

all other characters; the times to perceive, recognize, and program a response

to a stimulus; the sizes of the various memories involved in processing; and

the "decay" times of the items in these memories. This detailed understanding

can only come from a precise specification of the cognitive activity underly-

ing Morse intercept behavior.

Qualitative Models. Toward this end, several models of processing in

the Morse intercept task have been proposed (Sabol, Wisher and Medici, 1991;

Townsend, 1991; Wisher, Kern and Sabol, 1990). These models all derive from

the two descriptions of processing first presented by Wisher, Kern and Sabol

(1990). Briefly, in their early state cognitive process model, it was assumed

that subjects could execute only one process at a time and that the buffers in

front of the processors were limited to one item at most. In the advanced

state model, Wisher et al. assumed that subjects could execute several

processes simultaneously. In addition, they assumed that the buffer sizes were

greater than one. We want to pay particular attention to this advanced state

model.

In the advanced state model four processes were arranged in series:
auditory perception, character recognition, motor organization, and response
execution. In front of each processor was a buffer that held information
as it was passed along through the system. Each buffer had a limit on the
number of items that it could hold and items in each buffer could decay over

time. Here decay refers to the natural loss of information if it is not rehearsed.
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Note that the processing time for each server, decay times for items in each

buffer and capacity limits of each buffer were left unspecified.

At the outset of processing, the stimulus (a sequence of square waves of

sound energy or, more simply, a L )ne sequence) was placed in the auditory

buffer (echoic memory). In the auditory perception stage (which accepted in-

formation from the auditory buffer), it was assumed that the sound energy was

transformed into a string of elements (i.e., that sound energy was transformed

into a string of dits and dahs). These element strings were then passed to

the recognition buffer. In the recognition stage (which accepted items from

the recognition buffer), it was assumed that an element string was recognized

as a character. The character code was passed on to the motor organization

buffer. It was then assumed that the motor program needed to typ'- the par-

ticular character was set u- by the motor organization stage. Finally, the

motor program was passed on to the motor execution buffer where, eventually,

the response was initiated. We should note that the above reflects the

details of just one of the late stage models proposed by Wisher et al.

Several variations on the above were suggested.

Analytic Models. The above qualitative model suggests a number of points

in the processing of stimuli where the operator may have difficulty. However,

it is difficult to test the various hypotheses without being able to predict

how accuracy and response time change a- a function of the changes in zhe in-

dependent variables mentioned above. Towards this end it is necessary to

quantify the model. Unfortunately, this is not by any means an easy task.

Briefly, the model proposed by Wisher et al. (1990) is quite clearly a

queueing model. The literature on queueing models is extensive (e.g., Gross

and Harris, 1985, discuss the basic elements of queueing theory; Rouse, 1980,

reviews queueing networks that have been used to model person-machine

systems). However, the majority of the existing analyses assume that the

queueing system has reached steady state or equilibrium. Such will not be the

case for the behavior of the queueing system in the tasks undertaken by the

Morse intercept operator. In these tasks, the system is unlike±y to reach

equilibrium since five tone sequences are presented one at a time, fellowed by

an interval of time which in many cases is long enougr for the systm to clear
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itself. And even were the system not to clear itself, the fact that a break

exists between groups makes it impossible to accept the assumption of steady

state. Thus, one needs to undertake a transient analysis of the queueing sys-

tem.

Toivnsend (1990) building on results reported in Fisher and Smith (1987),

shows the form that the analyses must take. Basically, it is necessary to

translate the queueing network into an Order-of-Processing (OP) diagram
(Fisher and Goldstein, 1983; Goldstein and Fisher, 1991). Once so translated,

it is possible to obtain closed form expressions for relatively restricted

queueing networks. The analysis for two networks was worked out in detail by

Townsend.

Briefly, in the first network, there were two nodes. A node consists of

a server and a buffer (possibly of size zero). Townsend assumed that the

server at the first node encodes and recognizes the stimulus and the server at
the second node organizes and executes the response. The buffer at the first

node was unlimited in capacity. The buffer at the second node was of size

zero. If an item was encoded and the response server was executing, that item

was held at the encoder and the encoder was prohibited from accepting further

input until the response server completed its execution of the downstream

item. Townsend assumed that n items were present in the first buffer at the

start and that no new items were added to the system. Finally, Townsend as-

sumed that the service times were independent, exponentially distributed

random variables. For this system, he derived analytic expressions for t!

time on average it took to respond to the ith item in the first buffer.

The above system does not contain a mechanism for producing errors.

Thus, by itself, the system cannot be the one that subjects are using since,

among other things, subjects always produce a significant number of errors.

One reasonable way to generate errors is to assume that the subjects can ex-

ecute at most one process in the system at any one time. If an item arrives

while either the encoder or responder is busy, that item gets lost from the

system. In the previous model, the item was simply held at the encoder. For

this new system, Townsend was able to derive both the probability of an error
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and the time on average it takes to respond, given that a correct response is

made (he assumed that if an item was lost from the system either no response

was made or an incorrect response was made).

Goal and Objectives

Goal. There are many reasons operators may find it difficult to complete

training. One hypothesis (Wisher et al., 1990) is that some operators cannot

simultaneously listen to (encode) an incoming signal at the same time as they

attempt to recognize and respond to other signals that have already arrived.

This ability is referred to as the ability to copy behind. The overall goal

of the work undertaken as part of this effort is to determine the extent to

which the copy behind hypothesis is supported by the data which has been col-

lected in the Morse code copy task.

Objectives. Attainment of the above goal requires the meeting of three

objectives. First, in order adequately to test the copy-behind hypothesis, it

is necessary to model Mor.e code copy behavior. In particular, it is neces-

sary to have a detailed model of the processes, memories, and other cognitive

building blocks involved in the Morse intercept process. As noted above,

Wisher et al. (1990) has proposed a rather extensive qualitative model. What

is needed at this point is a more precise characterization of what exactly is

meant by copy-behind, when exactly a period response will be produced, when no

response will be made, and so on (Objective 1).

Second, once the generic models are available, it is necessary to quan-

tify the behavior of the models. In particular, we were interested in having

the model predict the probability that an operator types a character cor-

rectly, types a character incorrectly, types a character as a period or fails

to type a character. (Periods are typed when an operator realizes that a

character has been transmitted, but is unable to respond quickly enough. The

period serves to maintain the format, i.e., the spacing.) And we were inter-

ested in having the model predict the time that it takes an operator to type a

character correctly, the time that it takes an operator to type a character

incorrectly, and the time that it takes an operator to type a period. As

above, Townsend (1990) has produced analytic expressions for response times
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and errors for several more simple models than the one developed by Wisher.

What is needed at this point are predictions of the dependent variables for

the more complex model. This can be achieved using either simulation

(Objective 2a) or, where possible, deriving the relevant analytic expressions

(Objective 2b).

Finally, given that the behavior of the models can be quantified, it is

necessary to determine just how well the models fit the data. None of the

models, either the qualitative model proposed by Wisher et al. (1990) or the

quantitative models described by Townsend (1990) has been fit to results.
What is needed now is an evaluation of just how well the various quantitative

models do indeed fit the data (Objective 3).

A MODEL OF MORSE CODE COPY

The models of Morse intercept that we developed correspond closely to the

advanced state models proposed by Wisher et al. (1990). To begin, we want to

talk about the most general model (GenCOPB) that we developed, one which al-

lows for copy-behind and large-capacity buffers at each stage. We then want

to describe the two models that we tested. Both assume no buffering of the
input at any stage. The first allows for copy-behind (LimCOPB); the second

does not allow for copy-behind (NoCOPB).

There are a total of 77 parameters in the GenCOPB model, 14 of which are

free and 63 of which are fixed by the data and/or condition. There are a to-

tal of 68 parameters in both the LimCOPB and NoCOPB models, 5 of which are

free and, again, 63 of which are fixed by the data and/or condition. These

parameters are described in detail in Appendix A. They are also described in

context in the material below.

We assume throughout that the various server and decay times are inde-

pendent and that their distribution is well described as a gamma. Briefly,

the density function of a gamma is given by the right hand side of the equa-

tion below:

f(x) x0-a xa- e-/x ]/r(a) if x > 0,
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=0 otherwise.

The parameter a is referred to as the shape parameter; P is referred to as the

scale parameter. The mean and variance are given by, respectively:

E[X] =

VARIX] = a2

The function, r(a), is equal to a! when a is a nonnegative integer.

General Copy Behind Model (GenCOPB)

The Stages. We begin by developing a very general model, the GenCOPB,

which allows copy behind. Specifically, we assume the existence of three

stages, perception, recognition and execution. Each stage consists of a

"server" (some process) and a "buffer" (some memory). Specifically, we assume

the existence of three servers. We assume the existence of three buffers, one

in front of each of the servers. And we assume that decay can occur in any

one of the three buffers.

We assume that the stages are in series, where the string of tones input

to the perception stage is output as a string of elements (dits and dahs).

This string of elements is input to the recognition stage and output as a

character code. And finally, the character code is input to the execution

stage and output as an actual response.

It will De useful to have a more formal representation for the various

inputs. To begin, note that there are 31 different possible tone inputs, 26

letters and 5 special characters (the 10 digits were not included when fitting

the model and thus are not discussed). Each tone input t. is associated with1

a particular element string ei. Each element string ei is associated with a

particular character code ci. And each character code ci is associated with a

particular response ri. For example, the tone consisting of three 50 ms

pulses is associated with the element string, di-di-dit. The element string

di-di-dit is associated with the code for the character s. And the code for

the character s is associated with the motor program for pressing the letter s

on the keyboard.

7



Given this notation, a signal is output correctly if tone ti is the input

and response ri is the output; a signal is output as an incorrect character if

tone t. is input and response r. is the output (j = 1,...,31, i # j). A sig-2.3

nal is output as a period if tone ti is the input and a period is the output

(a period is indicated by the integer 44). And a signal is output as no

response if tone ti is the input and no response is made to this tone.

The Servers. Implicit in the above discussion of the stages is the fol-

lowing description of the role played by each of the servers. Specifically,

as in the model proposed by Wisher et al. (1990), the perception server maps

sound energy into a string of Morse elements, i.e., dits and dahs. The recog-

nition server maps the string of Morse elements into a character. And the

execution server both organizes a response and executes it.

We made several simplifying assumptions about the distributions of the

service times. To begin, we assumed that the duration Tr of the recognition

process and the duration Te of the execution process did not depend on the

identity of the input to the process or on the output of the process.

Furthermore, given our work with other, similar cognitive tasks, it seemed

reasonable to assume that the durations of the recognition and execution

processes were independent, gamma distributed random variables. We let a r and

Pr represent the shape and scale parameters for the distribution of the dura-
tion of the recognition process; and we let ae and 0e represent the shape and

scale parameters for the distribution of the duration of the execution

process. These four parameters were free.

Although we did not assume that the durations of the recognition and ex-

ecution processes depended on the input to these processes, we did assume that

the duration T p(ejIti) of the perception process was dependent on the identity

of the tone sequence ti which was given as input. At this point we do not as-

sume that the perception time depends on the output of the process. However,
we believe that such a dependency will be necessary to incorporate in future
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models and thus we keep this possibility open here by writing T p(ej it) in-

stead of writing more simply, T (ti). Again, we assumed that the durations of

the perception process for each tone sequence were independent, gamma dis-

tributed random variables. We used 32 parameters to describe these

distributions, 31 shape parameters a p(i), i = 1,...,31 and one common scale

parameter 0 . These parameters were fixed by the data in the latency confu-

sion matrix (see Appendix A for a discussion of the way the parameters were

set; see Appendix B for a discussion of the latency confusion matrix).

The Buffers. We made several critical assumptions about the buffers.

Specifically, we assumed that when a stimulus arrived at the perception buffer

and the perception buffer was empty, it went immediately to the perception

server. We assumed that when a stimulus arrived at the perception buffer and

the buffer had space available for it, the stimulus queued for service on a

first come, first serve basis. And we assumed that when a stimulus arrived at

the perception buffer and the buffer was full, the stimulus was lost from the

system. This generated no response from the model. Similar remarks apply to

stimuli arriving at the recognition and execution buffers.

We also assumed that when a stimulus decayed from any buffer, the

stimulus was lost, regardless of the level of processing which had been com-

pleted immediately prior to the loss. This loss also generates a no response

in the model.

A total of six parameters were needed to describe the decay times at each

of the three buffers. Specifically, we assumed that the decay times were in-

dependent, gamma distributed random variables. The shape and scale parameters

of the distribution of the decay time in the perception buffer are noted by,

respectively, a* and P*. The shape and scale parameters of the distribution
p p

of the decay time in the recognition buffer are noted by, respectively, a* and
r

O*. And the shape and scale parameters of the distribution of the decay time
r

in the execution buffer are noted by, respectively, a* and 0*. These six
e e

parameters are free.
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A total of three parameters were needed to describe the capacity size of

the three buffers. Specifically, the capacity sizes of the perception, recog-

nition and execution buffers are noted by, respectively, y p Yr and ye' These

three parameters are free.

Critical Perception Time. We made one critical assumption about the per-
ception server, an assumption which produced a period response from the model.

Specifically, we assumed that if the time to perceive the stimulus was longer

than some critical value, say 8, then the model coded the incoming stimulus as

a period. The rationale for doing so is the following. As the time it takes

an operator to perceive a stimulus increases, the data suggest that accuracy

decreases. Thus, rather than make an incorrect response, it may be optimal

for the operator to produce a period as a response (which, during training,

earns the operator a smaller point loss than an incorrect response).

Note that we assume that the duration of the perception process continues

beyond the critical value 6. It is only after the perception process has com-

pleted that a comparison is made between the duration of this process and the

critical value. This may appear counterintuitive at first glance. However,

note that it could well be less time consuming simply to perceive a stimulus

and then determine whether the critical value has been exceeded than concur-

rently both to perceive the incoming stimulus and to monitor the duration of

this process. The exhaustive scanning mechanism proposed by Sternberg (1969)

requires for its justification a similar argument. The critical time was a

free parameter.

Character Errors. Define a character error as a transformation of a
character (as opposed to period) input at one stage to a character output at

the same stage which is not associated with the input. So, a character error

at the perception stage is a transformation of a tone sequence t. into an ele-1

ment sequence e., where i,j = 1,...,31, i # j. A character error at the

recognition stage is a transformation of an element string ei into a character

code c., where i,j = 1,...,31, i # j. And a character error at the execution
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stage is a transformation of a character code ci into a response r., where

i,j = 1,...,31, i # j.

We need to consider the possibility of character errors at all three

stages. To begin, consider character errors at the perception stage. When

the duration of the perception server was less than 6, on some trials the per-

ception stage worked correctly (i.e., tone sequence t. was mapped into element

string ei); on other trials it produced a character error. Since there were

31 tone sequences, we need to specify for the perception stage the 31 prob-

abilities p(eiiti), i = 1,...,31. These 31 probabilities were determined by

the error confusion matrix (see Appendix A for a discussion of how the

parameters were estimated; see Appendix B for a discussion of the error confu-

sion matrix). To keep the analysis relatively simple, we grouped the off-

diagonal confusions. Thus, the probability of an incorrect perception

transformation was set equal to 1 - P(eiiti).

Next, we need to consider the possibility of character errors at the

recognition and execution stages. Implicit in the above is the assumption

that all confusions are bundled into the perception stage. That is, we do not

also allow confusions at the recognition or execution stages. This is not be-

cause we believe that such confusions do not occur. Rather, it is because the

preliminary data suggest that the majority of confusions occur at the percep-

tion stage. Of course, if our simplifying assumption is wrong, we should find

the GenCOPB unable to account for significant aspects of the data.

Limited Copy Behind (LimCOPB) and No Copy Behind (NoCOPB) Models

The limited copy behind (LimCOPB) is a special case of the general copy

behind (GenCOPB) model. Specifically, in the LimCOPB model, we assume that

the buffers are of size zero at each of the perception, recognition, and ex-

ecution stages. Note that this means we do not need parameters to describe

the duration of the decay in these three buffers.

11



Strictly speaking, the no copy behind (NOCOPB) model is not a special

case of the GenCOPB model since in the NoCOPB model all downstream processors

are surveyed, not just the processor at the next stage. Specifically, if

there are no items on any one of the perception, recognition or execution

servers, then an arriving item is placed on the perception server. Otherwise,

the arriving item is lost from the system and not recoverable.

SIMULATION

We now want to describe how we simulated the behavior of the three

models, the GenCOPB, LimCOPB, and NoCOPB. Recall that we are interested in

seven dependent variables, four related to accuracy and three related to time.

Specifically, we are interested in simulating the probability of a correct

response, the probability of an incorrect character response, the probability

of an incorrect period response, and the probability of no response. In addi-

tion, we are interested in simulating the time that it takes to make a correct

response, the time that it takes to make a incorrect character response, and

the time that it takes to make an incorrect period response.

Because the general copy-behind model was complex, we decided first to

simulate its behavior. The simulation follows directly from an OP repre-

sentation of processing in such a task (Fisher and Goldstein, 1983; Goldstein

and Fisher, 1991). To begin, we describe the state variables used in the

simulation. We then describe the actual transition rules. Finally, we

describe where in the simulation we obtain the relevant dependent variables.

(Note that we will wait until the discussion of the analytical work to

describe the actual OP diagram.) The source code is listed in Appendix C.

States

Conceptually, it is a straightforward matter to simulate the behavior of

the system we have described. This is because for purposes of the simulation

we can classify the evolution of the system over time into a finite number of

states. Furthermore, the relevant state variables themselves are constant

throughout the duration of any given state. Thus, we can simulate the system

as a series of discrete events.
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Each state si is defined as a structure consisting of a (y a+ 1) X 5 ar-

rival matrix M a(i), a (y p+ 1) X 5 perception matrix M p(i), a (y r+ 1) X 5

recognition matrix Mr (i), and a (ye+ 2) X 5 execution matrix M e(i) . The first

row of the arrival (perception, recognition, execution) matrix contains infor-

mation on the item currently on the arrival (perception, recognition,

execution) server. The second and subsequent rows contain information on the

items in the arrival (perception, recognition, execution) buffer.

As noted above, the 31 characters are represented by the integers 1 - 31

(and the digits by the numbers 32 - 41). The intercharacter interval is rep-

resented by the number 42. The intergroup interval is represented by the

number 43. The period character is represented by the number 44. Note that

we will refer to the generic entity which passes through the system as an

item, i.e., a tone sequence, element string, character code and response are

all items.

Arrival. Consider just the arrival matrix for state s. It may help

some to display a particular matrix and refer to the entries in the matrix as

we discuss them. To keep things simple, we will display only two rows in the

arrival matrix:

Ma(i): 23 23 1 49 0 (server entries)
a 17 17 2 - 0 (buffer entries)

To begin, consider the entries in the first row. The number (23) in the first

column and first row indicates the identity of the tone sequence in state s.i

which is currently on the arrival server. The number (23) in the second

column and first row indicates the identity of the tone sequence which

originally was sent. In the arrival matrix, this entry and the preceding

entry are identical since they reference the same item before any processing

has begun. The entry (1) in the third column and first row indicates the

serial position of the arriving tone sequence in the group in which it was

sent. Since there are five tone sequences in a group, the serial position
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will always lie between 1 and 5, inclusive. The number (49) in the fourth

column and first row indicates the amount of time whi:: remains before the

tone sequence identified in columns 1 and 2 actually arrives. The number (0)

in the fifth column and first row indicates the amount of time the tone se-

quence will have spent in the system when it finishes processing in the

arrival stage. This time is zero in the arrival matrix because it is assumed

that timing does not begin until the arrival process is complete.

Consider next the second and subsequent rows in the arrival matrix. The

entries (17 and 17) in the first and second columns of row 2 are identical and

indicate, respectively, the identity of the next tone sequence which will be

sent to an operator and the identity of the tone sequence which was originally

sent to the operator. Note that the next tone sequence sent to the operator

is the first tone sequence in the arrival buffer. The number (2) in the third

column and second row indicates the serial position in the group in which it
was sent of the tone sequence which is at the top of the arrival buffer. If

the serial position of the arriving tone sequence lies between 1 and 4, then

the serial position of the first tone sequence in the buffer is increased by

1. If the serial position of the arriving tone sequence is at the end of a

group (i.e., is 5), then the serial position of the first tone sequence in the

buffer will be 1. The serial position of an intercharacter or intergroup

blank is set at 0. The entry (in) in the fourth column and second row indic-

ates the time remaining before the tone sequence which is at the top of the

arrival buffer decays. We assume that this time is infinite, i.e., that there

is no decay in the arrival buffer. Finally, the number (0) in the fifth

column and second row indicates the total time that the tone sequence at the

top of the arrival buffer will have spent in the system when the tone sequence

currently being processed completes service. As above, this is zero because

it is assumed that timing does not begin until the arrival is complete.

Perception. The entries in the perception, recognition and execution

matrices are defined in much the same fashion as the above entries. To begin,

consider the entries in the perception matrix and, in particular, the entries

in the first row. Again, it may help to display an actual matrix, one where

we assume that the buffer can hold at most one tone sequence:
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M (i) 16 16 2 123 650 (server entries)

8 8 4 500 150 (buffer entries)

The number (16) in the first column and first row indicates the identity of
the tone sequence in state s. which is currently being mapped to an element

1

string. The number (16) in the second column and first row indicates the

identity of the tone sequence which originally was sent. Since the arrival

stage always outputs the same tone sequence which was sent as input, the tone

sequences in the first and second columns are identical in the perception

matrix (as well as the arrival matrix). The entry (2) in the third column and

first row indicates the serial position of the tone sequence being perceived

in the group in which it was sent. The number (123) in the fourth column and

first row indicates the amount of time which remains before the tone sequence

in the process of being perceived actually completes this process. The number

(650) in the fifth column and first row indicates the amount of time the tone

sequence being perceived will have spent in the system when it finishes

processing in the perception stage. This time will be the sum of the times

that it spent in the perception buffer and on the perception server. Thus,

for example, if tone sequence 16 arrived at the perception stage when the

server was occupied, if it took 200 ms to complete the servicing of the tone

sequence currently on the server, and if it took 450 ms to service tone se-

quence 16, then the amount of time tone sequence 16 will have spent in the

system when it finishes processing in the perception stage will be 650 ms.

Consider next the second row in the perception matrix. The entry (8) in

the first column of row 2 indicates the identity of the next tone sequence
which will be sent to the perception server (i.e., the identity of the first

item in the perception buffer). The entry (8) in the second column of row 2

indicates the identity of the tone sequence in the first row in the perception

buffer which originally was sent to the arrival stage. Again, this is the

same as the entry in the first column and second row since we assume that no

errors are introduced by the arrival stage. The number (4) in the third

column and second row indicates the serial position in the group in which it
was sent of the tone sequence which is at the top of the perception buffer.
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Note that in this example this number is not simply one more than the cor-

responding number in the first row and third column. What this indicates is

that the third tone sequence in the group must have entered the perception

stage at a time when the buffer was full. Thus, it was lost from the system.

The number (500) in the fourth column and second row indicates the time

remaining before the tone sequence which is at the top of the perception buff-

er decays. Finally, the number (150) in the fifth column and second row

indicates the total time that the tone sequence at the top of the perception

buffer will have spent in the system when the tone sequence currently on the

perception processor completes its service. In this case, tone sequence 8

could have arrived when there was 150 ms left to process of tone sequence 16

(of course, other scenarios could have led to the same time). Similar remarks

would apply to subsequent rows in the perception matrix were we to assume a

larger buffer.

Recognition. Next, consider the entries in the recognition matrix and,

in particular, consider the entries in the first row of the recognition

matrix. Assume that the buffer can hold only one element string:

Ml(i): 10 12 5 32. 1250 (server entries)
p 44 14 1 400 621 (buffer entries)

The number (10) in the first column and first row indicates the identity of

the element string in state si which is currently being recognized. The num-

ber (12) in the second column and first row indicates the identity of the tone

sequence which originally was sent and which has been transformed into the

element string now on the recognition server. Since the perception stage can

introduce errors, these two numbers need not be identical (and are not in this

example). The entry (5) in the third column and first row indicates the

serial position of the element string which is on the recognition server in

the group in which it was sent. The number (321) in the fourth column and

first row indicates the amount of time which remains before the element string

on the recognition server completes processing on this server. The number
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(1250) in the fifth cclumn and first row indicates the amount of time the ele-

ment string and associated tone sequence will have spent in the system when

the element string on the recognition server finishes processing. This time

will be the sum of the times that the item spent in the perception and recog-

nition buffers plus the sum of the times it spent on the perception and

recognition servers.

Consider next the second row in the recognition matrix. The entry (44)

in the first column of row 2 indicates the identity of the next element string

which will be sent to the recognition server (i.e., the identity of the first

element string in the recognition buffer). In this particular example, the

entry represents a period response, an indication that the critical time on

the perception server was exceeded for the corresponding tone sequence and

thus the perception server, rather than generating an element string as-

sociated with a character output, generated an element string for a period as

an output. The entry (14) in the second column of row 2 indicates the iden-

tity of the tone sequence originally sent which is now the first element

string in the recognition buffer. The number (1) i:, the third column and

second row indicates the serial position in the group in which it was sent of

the element string which is at the top of the recognition buffer. The number

(400) in the fourth column and second row indicates the time remaining before

the element string which is at the top of the recognition buffer decays.

Finally, the number (621) in the fifth column and second row indicates the to-

tal time that the element string at the top of the recognition buffer (and

associated tone sequence) will have spent in the system when the element

string current on the recognition processor completes its service. Similar

remarks apply to subsequent rows in the recognition matrix were the buffer to

hold more than one element string.

Execution. Finally, consider the entries in the execution matrix and, in

particular, consider the entries in the first row of the execution matrix.

Again, it may be helpful to describe these entries in the context of a par-

ticular example. Assume that the execution buffer can hold only one character

code:
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M (j) 20 10 3 101 1600 (server entries)
e 18 18 4 20 2210 (buffer entries)

The number (20) in the first column and first row indicates the identity of
the character code in state s. for which a response is currently being or-

ganized. The number (10) in the second column and first row indicates the

identity of the tone sequence which originally was sent and which has been

transformed into element string 20 at the perception stage and character code

20 at the recognition stage. The entry (3) in the third column and first row

indicates the serial position of the character code which is on the execution

server in the group in which it was sent. The number (101) in the fourth

column and first row indicates the amount of time which remains before the

character code on the execution server completes processing on this server.

The number (1600) in the fifth column and first row indicates the amount of

time the character code and its associated element string and tone sequence

will have spent in the system when character code finishes processing in the

execution stage. This time will be the sum of the times that the item spent

in the perception, recognition and execution buffers plus the sum of the times

it spent on the perception, recognition and execution servers.

Consider next the second row in the executicn matrix. The entry (18) in
the first column of row 2 indicates the identity of the next character code

which will be sent to the execution server (i.e., the identity of the first

character code in the execution buffer). The entry (18) in the second column

of row 2 indicates the identity of the tone sequence which through processing

in the perception and recognition stages has been transformed into the charac-

ter code at the top of the execution buffer. The number (4) in the third
column and second row indicates the serial position in the group in which it

was sent of the character code which is at the top of the execution buffer.

The number (20) in the fourth column and second row indicates the time remain-

ing before the character code which is at the top of the execution buffer

decays. Finally, the number (2210) in the fifth column and second row indic-

ates the total time that the character code at the top of the execution buffer

(and its associated element string and tone sequence) will have spent in the
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system when the stimulus current on the execution processor completes its

service.

Transition Rules

The simulation of the system requires knowledge of the state variables,

as explained above. It also requires knowledge both of the events which lead

to a transition between states and of the rules used to relate states which

follow one another. We now want to describe these events and rules.

Briefly, a transition between states occurs when an item (i.e., a tone

sequence, element string or character code) completes service or an item

decays. The determination of which item will complete or decay first can be
made in a straightforward fashion from the entries in the fourth column of the

arrival, perception, recognition and execution matrices. Specifically, the
minimum time is selected from the set of times consisting both of the arrival,

perception, recognition and execution service times and of the perception,
recognition and execution decay times.

Arrival. We now need to specify exactly what changes are made when
anyone of the above events occur. Although quite tedious, the details vary

enough for the different stages to require a relatively complete rendering of
the transition rules. To begin, consider the arrival stage. The item in the

arrival stage which completes first can be either a character or a blank. We
need to consider both. And the item which completes first in the arrival

stage can find the perception buffer full or not full. Again, we need to con-

sider both possibilities.

i) Assume that the item which completes first is a character in the ar-

rival stage. An example of a state, say si, where the first item to complete

is a tone sequence in the arrival stage is given below on the left; the
entries in the new state, say sj, which follows it are given on the right.

For the sake of simplicity, we assume that the buffers in the perception,
recognition and execution stages can hold only one item. And we represent

only the top most item in the arrival buffer:

19



Arrival Stage (si) Arrival Stage (s.)
1I

23 23 1 49 0 26* 26* 2* 250* 0

26 26 2 Cl 0 22* 22* 3* 1 0

Perception Stage (si) Perception Stage (sj)

19 19 5 305 600 19 19 5 256* 600
- - - - 23* 23* 1*1 1200* 256*

Recognition Stage (s.) Recognition Stage (sj)

14 14 3 200 953 14 14 3 151* 953

11 11 4 780 876 11 11 4 731* 876

Execution Stage (si) Execution Stage (s.)

8 81 1 510 1451 8 8 1 461* 1451

9 9 2 452 1008 9 9 2 403* 1008

As noted above, in order to determine which event completes first, we need to

look at the entries in column four of the matrices defining state s. and find1

the minimum. Doing such, we see that the times remaining on the arrival, per-

ception, recognition and execution servers are respectively 49, 305, 200 and

510 ms. And we see that the times remaining before decay occurs in the ar-

rival, recognition and execution buffers are, respectively, cc, 780 and 452 ms

(the perception buffer is empty, as indicated by the "-"). Thus, the minimum

time to completion or decay is 49 ms, or the remaining arrival time of tone

sequence 23.

The changes in the arrival, perception, recognition and execution

matrices are given on the right in the example state s.. The starred (*)
3

entries indicate where changes occur. To begin, consider the change in the

arrival matrix. Since tone sequence 23 completes, we move it off the arrival

server. We move the first tone sequence in the arrival buffer, tone sequence

26, to the arrival server and assign it the appropriate arrival time (say

250). Note that we have displayed only the first two rows of the arrival
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matrix. However, we are assuming that the arrival buffer contains additional

items, and in particular, contains tone sequence 22 below tone sequence 26.

Thus, we move tone sequence 22 up to the first position in the arrival buffer.

By implication it is the third tone sequence in the current group.

We also need to change the perception matrix. Note that although the

server of the perception matrix is occupied, the buffer of the perception

matrix is empty. Thus, we can put the tone sequence which just arrived (23)

in the buffer of the perception matrix and assign it a decay time, say 1200.

We need to make two additional changes. First, the time remaining to process

the tone sequence on the perception server must be reduced by 49 ms, from 305

to 256 ms. Second, the amount of time the newly arrived tone sequence 23 will

have spent in the perception buffer after the tone sequence currently on the

server completes its execution must be assigned. In this case, this is simply

256 ms. Note that the amount of time that tone sequence 19 will have spent in

the system after it completes processing is unaffected by the completion of

the tone sequence in the arrival stage. Thus, the entry in the perception

matrix in column 5 and row 1 in both states s. and s. is 600.
1 3

Finally, we need to decrement the server and decay times in the recogni-

tion and execution matrices. For example, the time remaining until element

string 11 decays in the recognition buffer is 780 ms when we first examine the

system. After tone sequence 23 arrives, 49 ms will have elapsed. Thus the

time remaining until element string 11 decays is reduced from 780 to 731 ms.

ii) Above, a character in the arrival stage was the first item to com-

plete. It could have been a blank (an intercharacter or intergroup blank)

instead. An example is given below (recall that 42 is the code for an inter-

character blank):

Arrival Stage (si) Arrival Stage (s.)

42 42 0 49 0 26* 26* 1* 250* 0

26 26 1 C 0 22* 22* 2* 0
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Perception Stage (si) Perception Stage (s.)

19 19 5 305 600 19 19 E 256* 600

Recognition Stage (si) Recognition Stage (sj)

14 14 3 200 953 14 14 3 151* 953

11 _I 4 780 876 11 11 4 731* 876

Execution Stage (si) Execution Stage (s.)

8 8 1 510 1451 8 8 1 461* 1451

9 2 45211008 t 9 9 2 403* 1008

In this example, note that all the times are changed as above and that a new

tone sequence is added to the arrival server. However, the blank is not moved

to the perception buffer since blanks are not processed through the system.

iii) Finally, suppose that the item which completes first is on the ar-

rival server and that the perception buffer is full. Then, we make the

changes indicated below:

Arrival Stage (si) Arrival Stage (s.)

23 23 1 49 0 26* 26* 2* 250* 0

26 26 2 - 0 22* 22* 3* - 0

Perception Stage (si) Perception Stage (sj)

19 19 4 305 600 19 19 4 256* 600

16 16 5 838 403 16 16 5 787* 403

Recognition Stage (si) Recognition Stage (s.)

1 J
14 14 2 200 953 14 14 2 151* 953

11 11 3 780 876 11 11 3 731* 876
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Execution Stage (si) Execution Stage (s.)

8 8 5 510 1451 8 8 5 461* 1451

9 9 1 452 1008 9 9 1 403* 1008

Note that the only difference here is that tone sequence 23 is not added to

the perception buffer since this buffer is already full.

Perception. Next, we need to consider the perception stage. An event

(i.e., a completion or decay) in this stage will drive the transition if

either the item on the perception server completes or an item in the percep-

tion buffer decays before any other service or decay occurs. To begin, assume

that the event which leads to the transition is the completion of the process-

ing of the tone sequence on the perception server. Then, if the duration of

the service is greater than some critical time, we assume that the tone se-

quence on the server is replaced by a period response. For illustrative

purposes, let us assume that this time is 1600 ms. If the duration of the

perception process is less than 1600 ms, then the tone sequence ti on the per-

ception server is replaced with its correct element string, el, with

probability p(riiti) and with an incorrect element string ej (i # j) with

probability 1 - P(riiti). Furthermore, it will be the case that sometimes the

tone sequence on the perception server completes (regardless of its duration)

when the recognition buffer is empty; at other times it will complete when the

recognition buffer is full.

As noted above, it may be the decay of a tone sequence in the perception

buffer (rather than the processing of a tone sequence on the perception serv-

er) that drives the next transition. If this is the case, then we need to

enforce alternative transition rules.

The full set of rules is discussed below.

i) To begin, assume that it is the perception service time which is the

minimum of the times remaining until an item either completes service or
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decays from a buffer. And assume the perception service time is greater than

the critical time of 1600 ms. Then, the matrices are changed as in the fol-

lowing example:

Arrival Stage (s.) Arrival Stage (s.)

23 23 1 350 7 23 23 1 301 4 0
26 26 2 0 26 22 2 0

Perception Stage (si) Perception Stage (s.)

1 J

19 19 5 49 1 8 8 8 - -* -* -* -*

Recognition Stage (si) Recognition Stage (sj)

14 14 4 200 953 14 14 4 151* 953
- - 44* 19* 5* 731* 151*

Execution Stage (si) Execution Stage (s.)

8 8 2 510 1451 8 8 2 461* 1451

9 9 3 452 1008 9 9 3 403* 1008

There are several things to note. First, the tone sequence 19 on the percep-

tion server now becomes the element string 44 in the recognition buffer (the

string associated with a period response). Second, the actual service time in

the perception stage is greater than 1600 ms and, in this case, is equal to

1888 ms, assuming that no time was spent in the perception buffer.

ii) Assume that the first item to complete or decay is in the perception

stage, as above. However, now assume that the perception service time is less

than the critical perception time of 1600 ms. Then, as noted above, one of

two things can happen. The tone sequence 19 can be transformed correctly into

the element string 19 or it can be transformed into some other element string.

When the element string was transformed incorrectly, we mapped tone sequence 1
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to tone sequence 2 and tone sequences 2,...,31 to tone sequence 1. For ex-

ample, below tone sequence 19 is mapped to tone sequence 1:

Arrival Stage (si) Arrival Stage (s.)

23 23 1 350 0 23 23 1 301* 0

26 26 2 0 26 22 2 _

Perception Stage (si) Perception Stage (s.)

19 19 5 49 742 - * - -* -__

Recognition Stage (si) Recognition Stage (sj)

14 14 4 200 953 14 14 4 151* 953
- - - - - 1* 19* 5* 731* 151*

Execution Stage (si) Execution Stage (s.)
1 J

8 8 2 510 1451 8 81 2 461* 1451

9 9 3 452 1008 9 9 3 403* 1008

Note that the time tone sequence 19 will have been in the system when it com-

pletes service on the perception server is only 742 ms, as opposed to 1888 ms

in the previous example. Thus, a period response is not generated.

iii) In both of the above examples, there was room in the recognition

buffer for the output of the perception server. This will not always be the

case. When this happens, the times are updated appropriately and the element

string output from the perception server is bumped from the system, increment-

ing by one the number of no responses in the simulation. We have already

described how this change is made when we discussed the transition rules for

the arrival stage.
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iv) Finally, suppose that it is the decay of the tone sequence in the
perception buffer that drives the transition. Then, the state entries might

appears as below:

Arrival Stage (si) Arrival Stage (s.)

23 i23 1 386 0 23 23 1 337* 0
26 26 2 - 026 26 2 0

Perception Stage (si) Perception Stage (s.)

19 19 41 305 600 19 19 4 256- 600

16 16 5 49 403 -* - - - -*

Recognition Stage (si) Recognition Stage (s.)1 J
14 14 2 200 953 14 14 2 151* 953

11 11 3 780 876 11 1II 3 731* 876

Execution Stage (si) Execution Stage (s.)

8 8 5 510 1451 8 8 5 1461* 1451

9 9 1 452 1008 9 9 1 403* 1008

Note that tone sequence 16 in the perception buffer has decayed and thus ap-

pears in state si, but not in state sj.

Recognition and Execution. The transition rules in the recognition and

execution stage are similar to those in the perception stage with one excep-

tion. In particular, the transformation of an element string into its

corresponding character code is considered errorless and the transformation of

each character code into its corresponding motor program is considered error-

less.

26



Dependent Variables

Information on six of the seven dependent variables we obtain from the

execution matrix at each point in time when the first item in a state to com-

plete is on the execution server. An example execution matrix is listed

below:

Execution Stage

8 8 1 510 1451 (server entries)

44 9 2 452 1008 (buffer 1 entries)

1 17 3 856 1217 (buffer 2 entries)

Now, consider how we obtain six of the seven measures from the above

matrix. Note that 1451 is the final measure of the response time for tone se-

quence 8. This will be a sample of the correct response time (since the

entries in columns 1 and 2 of row 1 are identical). Thus we increment by one

the number of correct responses, giving us the information we need eventually

to compute the probability of a correct response. When we return at some

point in the future to this matrix, as long as the first character code in the

buffer has not decayed, a period (44) will be output. In the fifth column of

the first row will now appear the time it took to make the period response

when tone sequence 9 was the original item. Thus, we have a sample of a

period response time. Furthermore, we increment by one the number of period

responses, giving us the information we need eventually to compute the prob-

ability of 2 period response. Finally, when we return at a still later point

to this matrix, as long as the second character code in the buffer has not

decayed, a 1 will be output. In the fifth column of the first row will appear

the incorrect response time. And we increment by one the number of incorrect

response, giving us the information we need eventually to compute the prob-

ability of an incorrect response.

We obtain information on the seventh dependent variable as the system

evolves. That is, rather than keeping track of decayed items or items which

have been bumped from the system because they were output at a time when the

immediate downstream buffer was full, we simply increment by one the number of
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items to which an operator will make no response at the time an item disap-

pears. Thus, we obtain the information we need in order to compute the

probability of no response.

ANALYSIS

Although the simulation as described above yields the desired predic-

tions, it has one weakness (a weakness common to all simulations).

Specifically, it is never truly possible to identify the parameter settings

which maximize the fit of a given model to the data. The best that can be

done with a simulation is to make the search through the parameter space a

relatively fine one, hoping that there exist no unexplored points which would

radically alter the fit of the particular model being simulated. Exact iden-

tification of the parameter settings which maximize the fit can only be done

when closed form expressions can be obtained for the dependent variables of

interest.

Unfortunately, the GenCOPB, LimCOPB and the NoCOPB are themselves ex-

tremely complex models, making it difficult if not impossible to obtain the

desired closed form expressions. And even were one to obtain the expressions,

they themselves might be too unwieldy to work with. The question at this

point is therefore a threefold one. First, in principle can closed form ex-

pressions be obtained for the GenCOPB, LimCOPB and NoCOPB models? Second, if

in principle such expressions can be obtained, are there some experimental

paradigms which, unlike the current paradigm, introduce enough constraints to

make it possible actually to derive these expressions in a reasonable amount

of time? And third, how would one obtain these expressions were such

paradigms to exist?

OP Diagrams

We can answer the first question quite easily. Indeed, it is possible to

obtain closed form expressions for the various expressions in which we have an

interest. In order to prove that this is the case, we first need to describe

the general structure of an OP diagram. Then, we need to show that the state

space of the models we have developed is itself an OP diagram. Once we know
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the structure of our models is an OP diagram, we can use the work in Fisher

and Goldstein (1983; Goldstein and Fisher, 1991) to obtain the desired expres-

sions given certain auxiliary assumptions.

General Structure. Formally, an OP diagram is a structure <r,',Q> con-

sisting of a set F of processes, set ' of paths, and set Q of states. The set

F consists of n(F) processes, labelled xl,...,Xn(F)* Each state in Q cor-

responds to a partition of the processes in F. The states are labelled

S,1.'"'n(Q). Note that not all partitions of F need be in 12. Each path a in

T consists of a sequence of states. We identify the states on path a, in or-

der, as sa1 Sa2 ... ,isan(a)

Several remarks need to be made about the states. First, the processes

in each state si must be resident in one and only one of four sets, the pre-

active set A(si), the current set C(si), the completed set K(si), or the other

set O(si). Second, the first state along any path must have empty completed

and other sets and at least one process in the current set. Third, the last

state along any path must have empty pre-active and current sets and at least

one process in the completed set.

There are restrictions not only on the character of the sets of states at

the beginning and end of each path, but also restrictions on the character of

states adjacent to one another on a path. These restrictions are displayed

graphically in Figure 1 below:

Figure 1

Pre-Active Current Completed Other

A(si) --- > A(sj) A(si) --- > C(sj) A(si) -v-> K(s.) A(si) - -> O(sj)

C(si) -,-> A(sj) C(si) --- > C(s.) C(si) --- > K(sj) C(si) --- > O(s.)

K(s i) -- A(.,7 K(s i) -- > C(sj K(si) -- > K(sj K(s i) -- > 0(sj

0(s i)-> A(sj 0(si) -- > C(sj 0(si) -ý-> K(sj 0(si) -- > O(sj

29



Note that an arrow, --- >, joining two different sets in adjacent states, say

A(s.) --- > A(sj), means that later set (in this case, the pre-active set A(s.)

can contain processes in the earlier set A(s i). The negated arrow, -7"->, con-

nected two different sets in adjacent states, say C(si) -4-> A(s.), means that

the later set, A(s.), does not contain any elements of the earlier set, C(si).

In words, if state s. is an immediate successor of state s. for some pathD I

in r, then restrictions apply to the four sets which define state s.. First,
D

the pre-active set A(s.) of state s. can contain no processes which are not

contained in the pre-active set A(si) of state si. Second, the current set

C(s.) -f state s. can contain no processes in the completed set K(si) of state

si. Third, the completed set K(sj) of state s. must contain every process in
1J J

the completed set K(si) of state s. as well as at least one process from the

current set C(Si) of state si. Furthermore, no processes from the pre-active

set A(si) or other set O(si) of state si can appear in the completed set K(sj)

of state s. Finally, the other set O(sj) of state s. can contain no

processes in the pre-active set A(si) or completed set K(si) of state s

If a network is an OP diagram, then using the techniques of Fisher and

Goldstein (1983; Goldstein and Fisher), we can obtain expressions for the be-

havior of the network if two additional conditions are met. First, the number

of states along any path in the OP diagram must be finite. And second, any

process which becomes current in one or more states along a path must even-

tually enter a completed set.

We can easily show that the various models we have described can be rep-

resented as OP diagrams. Briefly, in our particular case, we associate seven

processes with each tone sequence, four service processes (one each for the

arrival, perception, recognition and execution servers) and three decay

processes (one each for the perception, recognition and execution servers).

At the outset, the pre-active set consists of each of the seven processes for
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all of the different tone sequences except for the arrival service process for

the first tone sequence. This will appear in the current set of the start

state. When the arrival service process completes, this process enters the

completed set of the second state and both the perception service process as-

sociated with the first tone sequence and the arrival service process

associated with the second tone sequence enter the current set. And so on.

Analysis

In theory, since the various models can be represented as OP diagrams we

can derive the moments of the response time analytically. However, this does

not mean we can obtain closed form expressions for these models, or even if we

could obtain such expressions, that we could do so in a reasonable length of

time. In fact, although we cannot obtain closed form expressions as the
models are currently set forth, we can easily modify the model so that such

expressions can be obtained in theory. The problems requiring modification

come at two points.

First, recall that in the perception stage we took one path if the per-

ception service time were greater than the critical perception time, another

path if this were not the case. Thus, knowledge of the last finishing process

and the sequence of states up until the current state does not alone determine

the path taken out of the current state. Strictly speaking then, the various

models we have proposed cannot be represented as OP diagrams (Goldstein and

Fisher, 1991), a seeming contradiction to our conclusion in the previous sec-

tion.

Fortunately, we can easily get around the above problem. Specifically,

we can represent the critical time itself as a process. The critical time

process is then in a race with the perception process. If the critical time

process finishes before the perception process, then the tone sequence on the

perception server is replaced with a period when the server completes. If the

perception process finishes before the critical time process, then the tone

sequence on the perception server is replaced with its associated element

string when the server completes.
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Second, it is not possible to obtain closed form expressions for gamma

distributed random variables unless the gamma is a sum of independent exponen-

tials. This does not overly restrict the shape of the distributions and seems

a reasonable enough assumption. Thus, below we assume that the distributions

of the various processes are independent, gamma distributed random variables

subject to the constraint that the gamma random variables are themselves sums

of independent exponentials.

Feasibility. As noted above, it does not follow that because we can

derive closed form expressions in principle, we will be able to do such in

practice. In fact, it is much too time consuming to derive such expressions.

This can be demonstrated easily enough. Briefly, if 250 stimuli (tone

sequences) are displayed on any one trial, there are 250! different orders in

which any one combination of tone sequences could be presented. Since the

analytic expressions for the response time depend on both the order in which

the tone sequences are presented and their identity, it simply is not possible

to derive all 250! different predictions in any reasonable time frame.

Fortunately, tLere is a way around the above problem. Specifically, we

need not predict response times for all 250 stimuli. We could predict

response times for just the first five stimuli in a group. Since there are 31

characters, there are 31 X 30 X 29 X 28 X 27 = 20,389,320 different predic-

tions of response time we would need to make (this assumes that no character

appears twice in the same group of five). Again, this is obviously way to

large. However, suppose that we were to use only five characters throughout

an entire experiment. Each trial would consist of a random permutation of

these five characters. A large gap would appear between a group, say 3

seconds, enough to clear the system. In this case we would need to make only

5! = 120 predictions of response time. This may be small enough to be manage-

able.

Note that we do not need a different closed form expression for each of

the 120 different predictions of response time. The closed form expression

remains the same across predictions. What changes are the values of the

parameters we substitute into the closed form expression.
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Computations. We need now to represent processing as an OP diagram in

order to show how we would compute the desired closed form expression for

response time. Consider just the NOCOPB model (it is simplest). And consider

just one path in the evolution of the system. Suppose that five stimuli are

presented, tl,...,t 5 . Label the arrival, perception, critical time, recogni-

tion and execution processes associated with the ith tone sequence

respectively as ai, Pi, ci, ri, and ei. Then, an example path through the OP

diagram would appear as below:

State Current Completed Other

1 a1

2 a2 ,PlC 1  a1

3 a3 ,PlC 1  a2

4 a4 ,Plcl a3

5 a5 ,Pl 1,c 1  a4

6 a5,r P1  C

7 a5,e 1  r1

8 a5 e1

9 p5 ,c 5  a5

10 P5  c5

11 r 4 4  P5

12 e4 4  r44

13 --- e44

Note that we have not represented the pre-active set simply because to do so

would be too cumbersome.

Briefly, the figure should be interpreted as follows. In state sI the

arrival server is busy processing the first tone sequence tI on the arrival
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server. In state s2 this arrival completes (so a1 is placed in the completed

set) and the first tone sequence is passed on to the perception server (pl).

A process (c1 ) is also placed on the perception server and represents the

critical time. And finally, the next arrival (a 2 ) is now placed on the ar-

rival server. Processing continues in this fashion for all five arrivals.

Note that in state s5 we assume that the perception process (p!) com-

pletes before the process (cI) which represents the critical time. Thus c1 is

placed in the other set since its processing is interrupted. Just the op-

posite happens in state s Here the critical perception time associated with

tone sequence t 5 is shorter than the duration of the perception time for the

same tone sequence. Thus, the fifth tone sequence is sent as a period element

string (44) to the recognition server.

It is now a straightforward matter to derive the seven dependent vari-

ables. This requires knowing how to compute the probability that a particular

path is taken and the expected duration of the path. The computations are

reasonably simple if we assume that the durations of the various processes are

independent, exponentially distributed random variables. In this case, we

need only one parameter to describe each process xi, the rate parameter, say

1

The probability of taking a path from the start state up to and including

state s ais simply the product of i conditional probabilities, the first of
1

which, P(s 2is i), is the ratio of the rate parameter of the process which

completes when a transition is made from state s to state sa to the sum ofal1 a

the rate parameters of the processes current in state s , the second of

which, P(s Is ), is the ratio of the rate parameter of the process which
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completes when a transition is made from state s to state s to the sum ofa2  a3

the rate parameters of the processes current in state s , and so on. Thea2

time on average it takes to traverse a path up to and including state sa is a
2.

a 1 1sum of i conditional expectations, the first of which, E[T al1a], is the

reciprocal of the sum of the rate parameters in state s , the second ofa1

which, E[T a1a], is the reciprocal of the sum of the rate parameters of the

processes current in state s , and so on.a2

Given the above information, we can go on to compute the moments of the

response time (Fisher and Goldstein, 1983; Goldstein and Fisher, 1991). We

will not develop these computations here since to do so would require a fair

amount of work, work which may well change as we become more familiar with the

sort of model we eventually want to fit.

MODEL EVALUATION

We were most interested in whether the LimCOPB or NoCOPB models better

fit the results. In order to determine this, we performed some preliminary

analyses. Below, we describe these preliminary analyses for the two models.

Briefly, we fit the results from 19 subjects. The subjects were trained

at the US Army Intelligence School, Fort Devons, Massachusetts. The subjects

had completed the character learning phase and were beginning the speed build-

ing phase at the starting rate of six groups per minute (5 characters appeared

in each group). For these subjects, we had for each of the tone sequences ti,

i = 1 - 31, the probability that the subjects made a character response r.,

j = 1,...,31, a period response, or no response. And we had for each of the

tone sequences ti, i = 1 - 31, the time on average that it took the subjects

to make a character response r., j = 1,...,31, or a period response. The

relevant data are given in Appendix B.
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LimCOPB

Parameter Search. There are five free parameters with the LimCOPB model.

We did not engage in an extensive search of the parameter space since the fit

proved quite good with our initial estimates. Specifically, we found a good

fit with the following parameter settings for a r, Or ae , e and 6:

Process Shape Scale Mean Standard Deviation

Perception Server (parameters determined from data; depended on

individual tone sequence; see Appendix Al

Perception Decay (not applicable since there is no buffer}

Recognition Server 15(a r) 10(o ) 150 39

Recognition Decay {not applicable since there is no buffer]

Execution Server 15(a e) 10( e) 150 39

Execution Decay {not applicable since there is no buffer)

The critical time 8 we set at 1500 ms after trying several alternatives. The

other 63 parameters (32 parameters to describe the arrival times for each

character; 31 parameters to describe the errors) were fixed by the confusion

matrices in Appendix 2.

With the above parameter settings, we ran the simulation. The predicted

and observed probabilities are displayed below. The simulated results are

based on the output from 500 trials:

P(CORRECT), P(INC CHAR), P(PERIOD), P(NO RESP)

Predicted 0.848000 0.064000 0.068000 0.020000

Observed 0.849500 0.049745 0.069752 0.031003

Superficially, the agreement looks reasonable enough. We also obtained

predictions of the relevant response times which are listed below together

with the observations:

RT(CORRECT), RT(INC CHAR), RT(PERIOD), RT(NO RESP)
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Predicted 1184.7144 1162.0707 1922.2770 0.0000

Observed 1230.8064 1528.5364 2080.2903 0.0000

Again, the match looks good except for the response times to the incorrect

characters.

Incorrect Character Response Times. The fact that we did not fit the
response times for the incorrect characters arises directly from the way in

which we assign these response times. In particular, note that the time to

process tone sequence ti on the perception server is based on the time

T(riiti) that it takes to make a correct character response. If the percep-

tion process for tone sequence t. takes longer than the critical perception

time, 1500 ms in the above run, then it is assumed to be transformed into the

element string corresponding to the period. Since only times greater than

1500 ms go into the average of the period response time, this response time
will be at least as great as 1500 ms even though the underlying distribution

from which the times were drawn may have a mean much smaller than 1500 ms.

However, the predicted incorrect character response times will equal the cor-

rect character response times since they come from one and the same truncated

distribution.

Specifically, if the perception process for tone sequence t. takes less

than 1500 ms, then the tone sequence is assumed to be transformed correctly
A

with probability p(ri it) and incorrectly with one minus this probability. No

adjustment is made to the incorrect response times however. Thus, we find a

failure to predict the incorrect response times.

We need in future work to extend the LimCOPB model so that it can predict

the incorrect response times. Two possibilities suggest themselves. First,
we could introduce a second critical time with a value less than the first

critical time. Thus, say we have 61 and 62' where 61 < 62. Then, a tone se-

quence would be transformed into a period element string if the perception

service time were greater than 62. A tone sequence would be transformed into
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an incorrect element string if the perception service time were greater than

61 and less than or equal to 6 2* And a tone sequence would be transformed

into the correct, associated element string if the perception service time

were less than or equal to 8

Alternatively, we could assign one distribution to the correct response

times and a second distribution to the incorrect response times. Then, as

above we would assume that any response time greater than the critical

response time eventuated in a period response. Currently, we are exploring

both ways of handling the incorrect character response times.

Serial Position Information. We should note before concluding this sub-

section that the simulation predicts not only the seven dependent variables,

but also serial position information. Below, we see that there there appears

to be a primacy effect, but not a recency effect, within groups of five:

SERIAL POSITION INFORMATION

47 43 40 42 40

This is what we would expect since the first item in a group is more likely to

meet an unoccupied perception server than is the last item in a group.

We also generated predictions of response time across the five serial

positions within a group:

SERIAL POSITION INFORMATION

1142.072 1130.202 1273.773 1170.171 1219.631

Since there is no room in any of the buffers, any item that made it through

the system should have had a clear path all the way. Thus, we would not ex-

pect to see serial position effects. Without further statistical analysis it

is difficult to determine whether the above differences are significant.
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NoCOPB

Parameter Search. As might be expected, the NoCOPB model fit the results

every bit as well as the LimCOPB model. This is expected since at the slower

rates there is not as much need for copying behind. Below, we list the

results of three runs, one with a critical time of 1600 ms, one with a criti-

cal time of 1400 ms, and one with a critical time of 1300 ms. The first run

is with 8 = 1600:

CRITICAL TIME AT PERCEPTION SERVER = 1600.000

P(CORRECT), P(INC CHAR), P(PERIOD), P(NO RESP)

Predicted 0.892000 0.056000 0.004000 0.048000

Observed 0.849500 0.049745 0.069752 0.031003

RT(CORREC), RT(INC CHR), RT(PERIOD), RT(NO RSP)

Predicted 1204.0682 1220.6215 2086.5015 0.0000

Observed 1230.8064 1528.5364 2080.2903 0.0000

SERIAL POSITION INFORMATION: NUMBER CORRECT

47 43 45 43 45

SERIAL POSITION INFORMATION: CORRECT TIME

1167.336 1214.751 1271.863 1187.347 1180.407

Note that the predicted response times (except for the incorrect characters)

match well the observed response times. However, the observed probability of

a period response (0.06975) is seriously underestimated (0.004).

If we want to increase this probability we need to decrease the critical

perception time, which we do in the run below:

CRITICAL TIME AT PERCEPTION SERVER = 1400.000

P(CORRECT), P(INC CHAR), P(PERIOD), P(NO RESP)

Predicted 0.832000 0.040000 0.068000 0.060000

Observed 0.849500 0.049745 0.069752 0.031003
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RT(CORREC), RT(INC CHR), RT(PERIOD), RT(NO RSP)

Predicted 1152.5948 1265.1078 1830.5255 0.0000

Observed 1230.8064 1528.5364 2080.2903 0.0000

SERIAL POSITION INFORMATION: NUMBER CORRECT

43 43 42 42 38

SERIAL POSITION INFORMATION: CORRECT TIME

1154.037 1142.396 1125.010 1159.207 1185.682

The predicted probability (0.068) of a period response now matches closely the

observed probability. But note that in raising the predicted probability of a

period response we have lowered the average period response time to the point

where it no longer is closely tied to the observed period response time.

Thus, the model is clearly sensitive to variations in the parameters.

Finally, we would expect even worse fits were we to decrease the critical

response time still further. In the run below, we lower this time to 1300 ms:

CRITICAL TIME AT PERCEPTION SERVER = 1300.000

P(CORRECT), P(INC CHAR), P(PERIOD), P(NO RESP)
Predicted 0.724000 0.044000 0.124000 0 '08000

Observed 0.849500 0.049745 0.069752 0.031003

RT(CORREC), RT(INC CHR), RT(PERIO), RT(NO RSP)

Predicted 1169.4633 1225.6049 1854.8347 0.0000

Observed 1230.8064 1528.5364 2080.2903 0.0000
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SERIAL POSITION INFORMATION: NUMBER CORRECT

38 31 37 37 38

SERIAL POSITION INFORMATION: CORRECT TIME

1110.812 1167.096 1199.870 1182.710 1187.541

Note that the probability of a correct response, the probability' of a period

response, and the probability of no response are now seriously off. It is

clear why the probability of a period response should increase and why the

probability of a correct response should decrease. It is not clear to us why

the probability of no response should also increase. Specifically, the dis-

tribution of the perception service times does not change as a function of the

critical perception time, nor do either the recognition or execution service

times change. Thus, the probability of a period response ought to remain

roughly the same. We need to determine whether the above variation is random

or systematic, and if systematic why it is occurring.

CONCLUSION

The simulation developed here allows the user to predict for the Morse

code copy task the probability of a correct response, the probability of an

incorrect response, the probability of a period response, the probability of

no response, and the probability of a correct response for each of the five

serial positions in a group. The simulation also allows the user to predict

the time that it takes to execute a correct response, the time that it takes

to execute an incorrect response, the time that it takes to execute a period

response, and the time that it takes to execute a correct response for charac-

ters occurring in each of the five serial positions of a group.

In the most general case the simulation required the estimation of 77

parameters, 63 of which were fixed by the data. These parameters were needed

to describe the distribution of the duration of the service and decay times at

each of the perception, recognition and execution stages, the number of

stimuli which could fit into the three buffers, and the critical perception

time.
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No models to date have allowed for as wide a specification of input

parameters or for as rich a set of predictions. These models should make it

possible to explore in detail a number of hypotheses about the origins of the

training problems with learning to copy Morse code at higher input rates.

One such hypothesis was tested, in particular, the hypothesis that sub-

jects early in practice could not process two stimuli at the same time (the

copy behind hypothesis). Several variants of the most general model were

created to test this hypothesis. One, the LimCOPB, allowed copy behind; the

other, the NoCOPB, did not. The models fit about equally well. This is not

all that surprising given that copy behind is not particularly useful early on

since the intercharacter interval is relatively large. It still remains to be

determined whether at the faster rates subjects who make it through the train-

ing learn to copy behind whereas those that don't fail to learn this skill.
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APPENDIX A

PARAMETERS OF GenCOPB, LimCOPB AND NoCOPB MODELS

GenCOPB Model. There are a total of 77 parameters in the GenCOPB model.

To begin, consider the determination of the duration of the perception, recog-

nition and execution processes. Thirty-six parameters are needed to describe

the distributions of these three processes, only four of which are free. We

assume that the time T(riilt i) that it takes to generate character r i as a

response, given tone sequence t.i was presented, is the sum of the time

T p(eiilt i) that it takes to perceive a tone sequence t i as element string el,

given that tone sequence t i was presented, plus the time T r that it takes to

recognize element string e, plus the time T. that it takes to organize and ex-

ecute a response.

T(riilt i) = T p(ei iti + T r + Te"

Note that we assume that the recognition process is errorless and that the

duration of this process does not vary from one element string to the next.

Thus, we can drop both the indexed element string e i which is output to the

recognition process and the character code c i which is generated from this

process. Similarly, we assume that the execution process is errorless and

that the duration of this process does not vary from one character code to the

next. Thus, we can drop both the indexed character code c i and the response

r i which is generated from the character code.

Since we assume that the duration T r of the recognition process and dura-

tion T e of the execution process do not depend on the identity of the stimulus

which is being processed, we need only four parameters to describe the dis-

tribution of these durations: a shape parameter a r and scale parameter 0 r for

the recognition stage and a shape parameter a e and scale parameter 0 e for the

execution stage. These four parameters are free.
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We assume that the distribution of T p(ei it) is a gamma with individual

shape parameter shape parameters a p(i) and common scale parameter p. Note

that we could have individualized both the shape and scale parameters, but

decided not to do so on this first attempt. The common scale parameter was

selected so that the variance of the predicted observations was similar to

that of the observed. The individual shape parameters were selected so that

the equation, T(r iti) - E[Tr] - E[T] = a p(i)W p, was true, where T(riiti)

is the average correct response latency (obtained from the confusion matrix),

E[T r] = a rr and E[T e] = a ee, i.e.,

a p(i) = (T(riiti) - E[T r] - E[T e]}/Op , i = 1,...,31 (A1.1)

Thus, although there are 32 parameters [31 shape parameters, a (i),P

i = 1,...,31, and one scale parameter, p) needed to describe the distribu-

tions of the durations of the 31 correct percepticn times, these parameters

are all fixed by the confusion matrix data (for response times).

The next 10 parameters are free. To begin, consider the parameters

needed to described the decay time in the perception, recognition, and execu-

tion buffers. We assume that the distribution of the decay time does not

depend on the identity of the stimulus being processed or the fact that the

stimulus is a letter as opposed to a period. Thus, we need a total of 6

parameters, 2 for the perception decay time (a* and 0*), 2 for the recognition
p p

decay time (a* and 0) and two for the execution decay time (a* and *).

Next, we need three parameters for the capacity of the perception, recognition

and execution buffers. We will label these yp, Yr and y e' Finally, we will

also need a parameter for the critical time which we will label 6. Again,

these last ten parameters are free.

To complete the GenCOPB model, we need 31 parameters to determine when a

character is perceived correctly and when it is perceived inccrrectly as

another character, given that the duration of the perception process is less
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than the critical time 8. These parameters are fixed by the data in the con-

fusion matrix (errors). Specifically, the probability p(ei iti) that element

string ei is generated at the perception stage, given that tone sequence ti

was presented and that the duration of the perception process was less than 8,
A

is set equal to the observed probability P(riiti) that response ri is made,

given that tone sequence ti was presented. The probability that element

string e. is generated at the perception stage, given that tone sequence t.

was presented (i # j) and that the duration of the perception process was less

than the critical time 6, is simply the complement of the above, i.e., simply
A

1 - p(riiti). In the simulation, the determination on each trial of whether a

correct or incorrect element string was generated was made by sampling from a

uniform [0,1] distribution. If the value sampled lay in the interval
A

[0,p(ri it)], then the tone sequence tiwas transformed into the correct ele-

ment string; otherwise, it was assumed that the element string was incorrect.

No attempt was made to determine which of the incorrect element strings was

produced.

Note that we do not require additional parameters to describe the output

of the recognition and execution stages. This is because we assume that the

probability p(ci lei) that character code ci is generated by the recognition

stage, given that element string ei is input to the recognition stage, is

equal to 1, as is the probability p(ri~ ci) that the execution stage generates

response ri, given that character code ci was generated.

LimCOPB and NoCOPB Models. In order to reduce the number of free

parameters, we made several simplifying assumptions. Specifically, we assumed

that there was no room in the perception, recognition or execution buffers.

And, therefore, the three free buffer size parameters and six free decay

parameters were no longer necessary. Thus, the number of free parameters was

reduced by nine, from 14 to 5. The number of fixed parameters remained at 63.
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APPENDIX B:

ERROR AND LATENCY CONFUSION MATRICES

Below, we report the results from the 19 subjects we used to determine

the relative fit of the LimCOPB and NoCOPB models. First, we list the data in

the error confusion matrix. The first entry in row 1 (0.9095) is the prob-

ability that tone sequence t1 was recalled as character r1 ; the second entry

(0) in row 1 is the probability that tone sequence t1 was recalled as charac-

ter r 2 ; and so on through the 41st entry. The 42nd entry in the ith row is

the probability that the i th character is recalled correctly. For the first

row, it is the probability (0.9095) that the first entry is recalled cor-

rectly. The 43rd entry in the ith row is the probability that a tone sequence

is recalled as a character other than the one which is associated with it. In

the first row, this probability, 0.0181, is equal to the product (7)(.0016).

The 4 4th entry in the ith row is the probability of a period response to the

th character. And the 45th entry in the ith row is the probability of that no

response is made to the ith character. Note that the first "row" includes

the four lines indented underneath the first line; space did not permit the

printing of all entries in a row of the confusion matrix as a single line:

.9095 0 0 0 0 .0016 0 0 .0016 0

.0016 0 0 .0016 .0016 0 0 .0016 0 .0016

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .9095 .0181 .0280 .0444

0 .8109 .0016 .0329 .0016 .0016 0 .0033 0 0

0 0 0 0 .0016 0 0 .0016 0 0

0 .0049 0 .0066 0 .0033 0 .0016 0 0

0 0 0 0 0 0 0 0 0 0

0 .8109 .0608 .0987 .0296

0 0 .8793 0 0 0 0 0 0 0

.0046 .0015 0 .0031 0 0 0 0 0 0

.0015 0 0 .0077 .0046 0 .0046 0 0 0
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0 0 0 0 0 0 0 0 0 0

0 .8793 .0294 .0387 .0526

0 .0280 0 .7747 0 .0016 0 0 0 0

.0066 .0016 .0033 .0066 0 0 0 .0082 .0049 0

.0033 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .7747 .0657 .1349 .0247

.0016 0 0 0 .9079 0 0 0 .0115 0

0 0 0 0 0 0 0 0 0 .0016

0 0 0 0 0 .0016 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .9079 .0263 .0247 .0411

0 .0017 .0017 0 .0017 .8591 0 0 0 0

0 .0085 0 .0017 0 0 0 .0034 .0034 0

0 .0017 0 0 0 0 0 .0068 0 0

.0068 0 0 0 0 0 0 0 0 0

0 .8591 .0441 .0730 .0238

0 .0015 0 .0046 0 .0046 .7895 0 0 0

.0015 0 .0015 .0015 .0093 .0046 0 0 0 0

.0077 .0015 .0015 0 0 .0015 0 0 0 .0108

0 0 0 0 0 0 0 0 0 0

0 .7895 .0603 .1161 .0341

0 .0032 0 0 0 0 0 .7703 0 .0016

0 .0016 0 0 .0016 0 0 0 .1069 0

.0016 .0048 .0016 0 0 .0016 0 0 .0016 0

0 0 0 0 0 0 0 0 0 0

0 .7703 .1276 .0606 .0415

.0064 0 0 0 .0128 0 0 0 .8692 0

0 0 0 .0128 .0016 0 0 0 .0032 0

0 .0016 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .8692 .0446 .0415 .0447

.0016 .0016 0 .0016 0 0 0 0 .0016 .8273

.0016 0 0 0 .0016 .0132 0 0 .0016 0

0 0 .0115 .0016 0 0 0 0 .0049 .0033

.0033 0 0 0 0 0 0 0 0 0
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0 .8273 .0526 .0954 .0247

.0016 0 .0016 .0016 0 0 0 .0016 .0016 0

.9298 .0064 0 .0016 0 0 0 .0032 0 0

0 0 0 .0016 .0016 0 .0032 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .9298 .0256 .0207 .0239

0 0 0 0 0 .0016 .0016 0 0 0

.0016 .8581 0 0 .0016 .0080 0 .0048 0 0

0 0 0 0 0 0 0 .0064 0 0

.0016 0 0 0 0 0 0 0 0 0

0 .8581 .0319 .0558 .0542

0 0 0 0 0 0 0 .0033 .0016 0

.0016 0 .9030 .0033 .0099 0 0 0 0 0

0 0 0 0 .0016 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .9030 .0279 .0461 .0230

0 0 0 0 0 0 0 0 0 0

0 0 .0016 .9260 0 0 0 .0033 .0016 0

0 .0033 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 .9260 .0148 .0444 .0148

0 .0016 0 0 0 0 .0033 .0016 0 .0016

0 .0016 .0033 0 .8766 .0016 .0016 0 .0033 .0016

0 0 0 0 0 0 0 0 .0197 .0033

0 0 0 0 0 0 0 0 0 0

0 .8766 .0461 .0395 .0378

0 0 0 0 0 .0066 .0016 0 0 .0082

0 0 0 0 0 .8059 0 0 0 0

0 0 .0016 .0033 .0016 0 0 .0033 .0016 .0066

.0016 0 0 0 0 0 0 0 0 0

0 .8059 .0461 .1250 .0230

.0016 0 0 0 0 0 .0016 0 0 0

0 0 0 0 0 0 .9059 .0016 0 0

0 0 .0016 .0032 .0080 .0064 0 0 .0016 0

0 0 0 0 0 0 0 0 0 0

0 .9059 .0287 .0447 .0207
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.0033 0 0 .0016 0 .0099 0 0 0 0

.0049 .0099 0 0 0 0 0 .8586 0 0

0 0 .0082 0 0 0 0 .0016 0 0

0 0 0 0 0 0 0 0 0 0

0 .8586 .0476 .0609 .0329

.0016 0 0 .0016 0 0 0 .1003 .0214 0

0 0 .0033 0 .0016 0 0 0 .7763 0

.0082 0 0 0 0 0 .0016 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .7763 .1415 .0526 .0296

.0016 0 0 0 .0099 0 0 0 0 0

0 0 .0033 0 0 0 0 .0016 .0016 .9309

0 0 0 0 .0016 0 0 .0016 0 0

0 0 0 0 0 0 0 0 0 0

0 .9309 .0231 .0296 .0164

.0033 0 0 .0066 0 .0016 .0016 0 0 .0033

0 0 0 0 .0016 0 0 0 .0033 0

.7549 .0526 .0099 0 0 0 0 0 0 0
.0049 0 0 0 0 0 0 0 0 0

0 .7549 .0921 .1283 .0247

0 .0033 0 0 0 .0016 0 0 0 0

0 0 0 0 .0016 0 .0033 0 .0016 0

.0263 .8372 0 .0016 0 0 0 0 0 .0016

.0016 0 0 0 0 0 0 0 0 0

0 .8372 .0444 .0839 .0345

.0033 0 0 0 .0016 0 .0016 0 0 0

0 0 .0016 0 .0016 0 0 0 0 0

.0049 .0016 .8651 0 0 0 0 0 0 0

.0016 0 0 0 0 0 0 0 0 0

0 .8651 .0214 .0872 .0263

0 .0033 .0016 .0016 .0016 0 0 .0016 0 0

.0033 .0016 0 0 0 .0016 0 0 0 0

0 .0016 0 .8355 .0033 .0033 .0016 .0148 0 0
•.0016 0 0 0 0 0 0 0 0 0

0 .8355 .0461 .1020 .0164

0 .0016 .0049 0 0 0 0 0 0 .0016
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.0066 .0016 0 0 .0016 .0016 .0049 0 0 .0016

.0066 .0016 0 .0049 .8684 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 .8684 .0411 .0625 .0280

.0049 .0016 0 .0016 0 0 .0099 0 0 0
0 0 0 0 .0016 .0033 .0066 0 0 0

.0016 0 0 .0033 0 .8306 0 .0016 0 .0049

.0049 0 0 0 0 0 0 0 0 0

0 .8306 .0493 .0806 .0395

.0033 0 .0016 0 0 0 0 0 0 0
.0033 .0082 0 0 .0016 0 0 0 0 0

0 0 0 0 0 .0016 .8717 0 0 .0016

0 0 0 0 0 0 0 0 0 0

0 .8717 .0279 .0609 .0395

0 0 0 .0016 .0099 .0378 .0016 0 0 0

0 .0230 0 0 0 .0033 0 0 .0016 0

0 .0016 .0016 .0016 0 0 .0016 .7615 0 .0016

.0049 0 0 0 0 0 0 0 0 0

0 .7615 .1036 .1053 .0296

0 .0017 0 0 0 0 0 .0085 0 .0102

0 0 0 0 .0204 0 0 0 .0017 0
0 0 .0017 0 0 0 0 0 .8846 .0187

0 0 0 0 0 0 0 0 0 0

0 .8846 .0627 .0289 .0238

.0016 .0016 0 .0016 0 0 .0016 .0016 0 .0064

0 0 0 0 .0064 .0064 0 .0016 0 0

0 0 0 0 0 0 0 0 .0064 .7911
.0016 0 0 0 0 0 0 0 0 0

0 .7911 .0430 .1260 .0399

0 0 0 0 0 .0115 0 0 0 .0016

0 .0016 0 0 0 0 0 0 0 .0016

.0099 0 .0115 .0016 .0049 .0016 0 0 0 0

.8651 0 0 0 0 0 0 0 0 0

0 .8651 .0477 .0658 .0214
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Next, we present the results from the latency confusion matrix. Note

that the only difference between these results and the results above is that

there is not an entry for the latency of no response.

1048 0 0 0 0 369 0 0 2090 0

779 0 0 1835 317 0 0 303 0 1926

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1048 1088.4287 2330 0

0 1233 1001 1274 21193 224 0 1433 0 0

0 0 0 0 311 0 0 2268 0 0

0 1706 0 1248 0 2696 0 2501 0 0

0 0 0 0 0 0 0 0 0 0

0 1233 1916.3907 1953 0

0 0 1135 0 0 0 0 0 0 0

1472 2384 0 1389 0 0 0 0 0 0

92 0 0 1324 1418 0 2283 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1135 1522.1196 2004 0

0 1261 0 1341 0 1101 0 0 0 0

1347 1261 1047 1379 0 0 0 2621 3484 0

1195 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1341 1607.5070 2193 0

973 0 0 0 111 0 0 0 1436 0

0 0 0 0 0 0 0 0 0 1354

0 0 0 0 0 1199 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1111 1359.2394 1875 0

0 1916 1485 0 1007 1323 0 0 0 0

0 1737 0 1243 0 0 0 1160 579 0
0 747 0 0 0 0 0 1582 0 0

1284 0 0 0 0 0 0 0 0 0

0 1323 1364.7726 1874 0

0 887 0 1372 0 1241 1530 0 0 0

1977 0 1737 1297 2008 1397 0 0 0 0
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1546 1045 1332 0 0 1482 0 0 0 1563

0 0 0 0 0 0 0 0 0 0

0 1530 1545.8831 1980 0

0 935 0 0 0 0 0 1147 0 349

0 2404 0 0 1790 0 0 0 1213 0

836 1011 4253 0 0 1426 0 0 1755 0

0 0 C 0 0 0 0 0 0 0

0 1147 1253.0952 2021 0

946 0 0 0 1213 0 0 01087 0

0 0 0 1566 2082 0 0 0 1268 0

0 827 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1087 131.8751 2437 0

302 1951 0 2531 0 0 0 0 1023 1232

2041 0 0 0 3988 1289 0 0 5981 0

0 0 884 1524 0 0 0 0 1370 2249

2014 0 0 0 0 0 0 0 0 0

0 1232 161.3530 2169 0

1160 0 1481 941 0 0 0 1054 1535 0

1077 961 0 81 0 0 0 877 0 0

0 0 0 1258 820 0 2888 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1077 1231.5001 1875 0

0 0 0 0 0 941 647 0 0 0

1223 1084 0 0 888 1765 0 1253 0 0

0 0 C 3 0 0 C 22?2 0 0

3048 0 0 0 0 0 0 0 0 0

0 1084 166.6471 1818 0

0 0 0 0 0 0 0 2335 1287 0

564 0 1201 1386 1207 0 0 0 0 0

0 0 0 0 3047 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1201 1505.4178 2559 0

0 0 0 0 0 0 0 0 0 0

0 0 698 1167 0 0 0 880 1157 0

0 2161 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 c

0 1167 1326.8674 1921 0

o 458 0 0 0 0 2049 1265 0 2195

0 2919 1282 0 1083 1849 1830 0 2054 1050

0 0 0 0 0 0 0 0 1855 1643

0 0 0 0 0 0 0 0 0 0

0 1083 1774.1836 1955 0

0 0 0 0 0 1597 5384 0 0 1960

0 0 0 0 0 1308 0 0 0 0

0 0 1841 1786 1532 0 0 1840 2885 1714

2286 0 0 0 0 0 0 0 0 0

0 1308 2004.8666 2006 0

1069 0 0 0 0 0 3025 0 0 0

0 0 0 0 0 0 1169 999 0 0

0 0 812 2869 2120 1234 0 0 695 0

0 0 0 0 0 0 0 0 0 0

0 1169 1742.1250 1716 0

738 0 0 1173 0 1744 0 0 0 0

1211 1583 0 0 0 0 0 1220 0 0

0 0 987 0 0 0 0 1123 0 0

0 0 0 0 0 0 0 0 0 0

0 1220 1347.0457 2344 0

1133 0 0 898 0 0 0 1514 1077 0

0 0 1923 0 2122 0 0 0 1193 0

1289 0 0 0 0 0 701 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1193 1429.6855 1945 0

1018 0 0 0 2310 0 0 0 0 0

0 0 1208 0 0 0 0 1035 1162 1195

0 0 0 0 219 0 0 461 0 0

0 0 0 0 0 0 0 0 0 0

0 1195 156.7266 3177 0

1398 0 0 1808 0 1776 1848 0 0 1152

0 0 0 0 2697 0 0 0 2705 0

1605 1296 1700 0 0 0 0 0 0 0

1828 0 0 0 0 0 0 0 0 0
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0 1605 1503.3225 2118 0

0 1162 0 0 0 511 0 0 0 0

0 0 0 0 2019 0 1709 0 759 0

1731 1177 0 1886 0 0 0 0 0 1576

1966 0 0 0 0 0 0 0 0 0

0 1177 1622.2775 1771 0

896 0 0 0 1546 0 3808 0 0 0

0 0 983 0 2906 0 0 0 0 0

1399 1203 1312 0 0 0 0 0 0 0

1404 0 0 0 0 0 0 0 0 0

0 1312 1616.3990 2166 0

0 1126 1447 867 870 0 0 2203 0 0

1416 2125 0 0 0 1171 0 0 0 0

0 2279 0 1358 3190 1606 943 1339 0 0

3041 0 0 0 0 0 0 0 0 0

0 1358 1602.5048 2055 0

0 957 1355 0 0 0 0 0 0 1706

865 2372 0 0 2023 1146 1734 0 0 1522

1730 3811 0 1992 1157 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1157 1628.7236 2140 0

1558 1771 0 727 0 0 1776 0 0 0
0 0 0 0 1901 1308 1699 0 0 0

1986 0 0 1205 0 1338 0 2597 0 1892

1975 0 0 0 0 0 0 0 0 0

0 1338 1703.9824 2095 0

1274 0 1132 0 0 0 0 0 0 0

1619 1516 0 0 2035 0 0 0 0 0

0 0 0 0 0 1256 1303 0 0 1005

0 0 0 0 0 0 0 0 0 0

0 1303 1446.3634 1962 0

0 0 0 648 1293 1395 438 0 0 0

0 1286 0 0 0 1901 0 0 765 0

0 989 2412 2186 0 0 1948 1321 0 935

1419 0 0 0 0 0 0 0 0 0

0 1321 1361.5017 1740 0
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0 1506 0 0 0 0 0 1131 0 1270

0 0 0 0 1436 0 0 0 2570 0

0 0 6043 0 0 0 0 0 1111 1514

0 0 0 0 0 0 0 0 0 0

0 1111 1548.1082 2201 0

1161 3424 0 1375 0 0 2036 1930 0 1591

0 0 0 0 1283 1940 0 978 0 0

0 0 0 0 0 0 0 0 1449 1373

5232 0 0 0 0 0 0 0 0 0

0 1373 179.7826 2146 0

0 0 0 0 0 1788 0 0 0 2000

0 1278 0 0 0 0 0 0 0 1855

1081 0 1384 902 1136 1043 0 0 0 0

1216 0 0 0 0 0 0 0 0 0

0 1216 1398.9321 1943 0
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APPENDIX C:

THE FORTRAN SIMULATION CODE

C MOST RECENT UPDATE: 11/21/91 (APPROXIMATE)
C
C THIS PROGRAM, MORSE.FOR, WRITTEN 8/19/91 ON VAX AT UNIVERSITY OF
C MASSACHUSETTS COLLEGE OF ENGINEERING FOR DR. ROBERT WISHER
C BY DONALD L. FISHER. THE PROGRAM SIMULATES THE BEHAVIOR OF
C AN OPERATOR TRYING TO COPY MORSE CODE.
C
C THE UNDERLYING MODEL IS ONE IN WHICH THE FOLLOWING ASSUMPTIONS ARE MADE:
C
C 1) THERE ARE FOUR PROCESSES: ARRIVAL, AUDITORY PERCEPTION, CHARACTER
C RECOGNITION AND MOTOR ORGANIZATION AND EXECUTION. THE DURATION
C OF THE ARRIVAL PROCESS IS A CONSTANT EQUAL TO THE DURATION
C OF THE PARTICULAR MORSE CHARACTER THAT IS SENT. THE DURATION OF THE
C PERCEPTION, RECOGNITION AND EXECUTION PROCESSES ARE EACH GENERAL
C GAMMA RANDOM VARIABLES.
C
C 2) THERE ARE FOUR BUFFERS: THE ARRIVAL BUFFER IS STIMBUF AND IS
C UNLIMITED. IT CONTAINS BOTH THE CHARACTER AND INTERCHARACTER
C STIMULI. THE PERCEPTION, RECOGNITION AND EXECUTION BUFFERS ARE
C EACH SPECIFIED BY THE USER IN, RESPECTIVELY, INFO(2,2), INFO(2,3)
C AND INFO(2,4). NOTHING DECAYS OUT OF THE ARRIVAL BUFFER. THE
C DURATION OF THE DECAY PROCESSES IN THE THREE REMAINING BUFFERS
C IS MODELED AS A GENERAL GAMMA RANDOM VARIABLE.
C
C 3) THE EXECUTION BUFFER HOLDS PERIODS, NOT CHARACTERS. SPECIFICALLY,
C IF A STIMULUS EXITS THE RECOGNITION STAGE AND THE EXECTUTION SERVER
C IS FULL, THEN THE STIMULUS ENTERS THE EXECUTION BUFFER AS A PERIOD.
C THE SIZE OF THE EXECTUTION BUFFER SHOULD BE KEPT RELATIVELY LARGE.
C SIMILARLY, BECAUSE WE DO NOT WANT RAPID DECAY OF PERIODS, THE DURATION
C OF A PERIOD IN THE EXECUTION BUFFER SHOULD BE SET RELATIVELY LARGE.
C
C
C
C
C DEFINE VARIABLES:
C
C NCHR: NUMBER OF DIFFERENT CHARACTERS IN INPUT STREAM: 26 (JUST LETTERS),
C 31 (LETTERS + SPECIAL CHARACTERS), 41 (LETTERS, SPECIAL
C CHARACTERS AND DIGITS); INITIALIZED IN SUBROUTINE SINV
C
C NCHRBUF: DIMENSION OF CHRBUF; MUST BE GREATER THAN NGROUP*NREP
C
C NCNT: SET EQUAL TO INFO(2,1) AT START; INFO(2,1) IS INITIALIZED
C IN THE FILE MORSE.IN
C
C NELEM: NEXT ELEMENT IN STIMULUS BUFFER (STIMBUF); READ IN FROM
C SUBROUTINE SINV; ALWAYS START AT ELEMENT 0.
C
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C NGPM: GROUPS PER MINUTE; READ IN FROM SUBROUTINE SINV
C
C NGROUP: NUMBER OF CHARACTERS IN A GROUP
C
C NOUT: SET EQUAL TO 1 IF FULL OUTPUT (INFO,STATEC,STATED,STATEX,
C STATEP,STATEY) DESIRED; OTHERWISE SET TO 0; READ IN FROM
C SUBROUTINE SINV
c
C NPER: THE NUMBER OF PERIOD RECODINGS PRODUCED WHEN A STIMULUS
C LEAVES THE PERCEPTION SERVER.
c
C NREP: NUMBER OF REPETITIONS OF A GROUP
c
C NSTIM: NUMBER OF "STIMULI" = 2*NGROUP*NREP (NOTE THAT EVERY CHARACTER
C IS FOLLOWED BY EITHER AN INTERCHARACTER BLANK OR AN INTER-
C GROUP BLANK); NOTE THAT NELEM CAN REACH NSTIM AS AN UPPER
C LIMIT
C
C RCRIT: IF IT TAKES LONGER THAN RCRIT MILLISECONDS TO SERVICE A
C STIMULUS IN THE PERCEPTION NODE, THEN THE STIMULUS IS
C RECODED AS A PERIOD.
C
C
C
C
C DEFINE MATRICES:
c
C ALPHA(2,4), BETA(2,4): IT IS ASSUMED THAT EACH SERVICE TIME AND EACH
C DECAY TIME (EXCEPT ARRIVAL) IS A GAMMA RANDOM VARIABLE
C WITH PARAMETERS ALPHA (a) AND BETA (b), I.E.,
c
C -a a-i -x/b
C f(x) = [b x e ]/gamma(a).
C
C IN THIS CONTEXT, THE PARAMETERS FOR THE FOUR SERVICE AND
C DECAY TIMES ARE:
C
C ARRIVAL TIME : ALPHA(I,1), BETA(I,1) -- ASSUMED CONSTANT;
C HOWEVER, COULD CHANGE TO GAMMA
C ARRIVAL DECAY: ALPHA(2,1), BETA(2,1) -- ASSUMED UNLIMITED;
C AGAIN, COULD CHANGE
C PERCEP TIME : ALPHA(1,2), BETA(1,2)
C PERCEP DECAY: ALPHA(2,2), BETA(2,2)
C RECOG TIME : ALPHA(1,3), BETA(1,3)
C RECOG DECAY: ALPHA(2,3), BETA(2,3)
C EXEC TIME : ALPHA(1,4), BETA(1,4)
C EXEC DECAY: ALPHA(2,4), BETA(2,4)
c
C CHRBUF(410): PROGRAM WRITTEN TO HANDLE 50 GROUPS OF 5 CHARACTERS
C EACH. NOTE THAT STIMBUF HAS BOTH INTERACHARACTER AND
C INTERGROUP BLANKS AND THUS SHOULD BE TWICE AS LARGE AS
C CHARBUF. ARRAY OF SIZE 410 BECAUSE EVERY 41 CHARACTERS
C IS GUARANTEED TO CONTAIN DIGITS 1 - 41. IF 31 CHARACTERS
C IS USED, THEN CHRBUF IS FILLED TO POSITION 31*10 = 310.
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C IF 26 CHARACTERS ARE USED THEN Ar.RAY IS FILLED TO 26*10 = 260.
C SINCE 260 IS GREATER THAN STANDARD 50*5 = 250 CHARACTERS,
C I WENT WITH THE RATHER ODD 410.
c
C CONMAT(41,45):
C
C A) INITIALLY, IN ROW I, COLUMN J IS PROBABILITY THAT CHARACTER
C I WAS SENT AND CHARACTER J WAS TYPED. NOTE £HAT PROBABILITIES
C IN A ROW SHOULD ADD TO ONE. HOWEVER, THIS DOES NOT MEAN THAT
C AN ELEMENT IN ROW I IS NEVER MISSED OR TYPED AS A PERIOD.
C THIS PROBLEM OCCURS LATER IN PROCESSES (CONMAT IS USED IN
C THE PERCPETUAL BUFFER). NOTE THAT IN ROW I AND COLUMN 44 I
C CONDITIONAL PROBABILITY OF TYPING A PERIOD GIVEN CHARACTER
C AND IN ROW I AND COLUMN 45 IS CONDITIONAL PROBABILITY OF
C TYPING NOTHING GIVEN CHARACTER I. THE OUTPUT INFORMATION
C ON PERIODS AND NO RESPONSES IS CONTAINED IN KILL: THE NUMBER
C OF ENTRIES IN THE PERCEPTION AND RECOGNITION NODES IS THE
C NUMBER OF NO RESPONSES; THE NUMBER OF ENTRIES IN THE
C EXECUTION NODE IS THE NUMBER OF PERIODS.
C
C B) AFTER READING IN CONMAT, IF P(JII) IS THE PROBABILITY THAT
C J IS TYPED WHEN I IS PRESENTED, THEN IN ROW I, COLUMN 1 WE
C PLACE P(1iI), IN ROW I, COLUMN 2 WE PLACE P(1lI) + P(21I),
C AND SO ON.
C
C CONFUS(41,41): IN ROW I AND COLUMN J IS THE NUMBER OF TIMES IN THE
C SIMULATION THAT CHARACTER J REPLACES
CHARACTER I AT THE
C END OF SERVICE ON THE PERCEPTION NODE. THIS INFORMATION IS
C OBTAINED FROM CONMAT.
c
C DATERR(41,45): ERROR DATA COMES FROM SUBJECTS. IN ROW I AND COLUMN J
C IS PROBABILITY THAT A SUBJECT RESPONDS WITH STIMULUS J
C GIVEN SUBJECT HAS BEEN PRESENTED STIMULUS I. I = 1,...,41
C SINCE NUMBER OF STIMULI CAN GO UP TO 41. J = I,...,41,
C 44,45. J = 44 IS PERIOD RESPONSE. J = 45 IS NO RESPONSE.
C J = 42,43 ARE USED AS STIMULUS VALUES (INTERCHARACTER AND
C INTERGROUP BLANKS), NOT RESPONSES. HOWEVER, IN COLUMN 42
C I'VE PLACED THE PERCENTAGE CORRECT RESPONSES, I.E., IN
C DATERR(IA,42) I'VE PLACED DATERR(IA, IA). AND IN COLUMN
C 43 I'VE PLACED THE INCORRECT CHARACTER ONLY ERRORS.
C THUS, THE PROBABILITIES SUMMED WITHIN A ROW ACROSS
C COLUMNS 42 - 45 OUT TO EQUAL 1.
C
C INFO(2,4): CONTAINS INFORMATION ON PARAMETERS OF ARRIVAL, PERCEPTION,
C RECOGNITION AND EXECUTION PROCESSES IN, RESPECTIVELY,
C COLUMNS 1, 2, 3 AND 4:
C
C INFO(I,1) = NUMBER OF CHARACTERS ON ARRIVAL SERVER (1 OR 0)
C INFO(2,1) = TOTAL NUMBER OF ARRIVALS IN SESSION LEFT; NOTE
C THAT ARRIVALS INCLUDE INTERrHARACTER AND INTER-
C GROUP INTERVALS
c
C INFO(1,2) = NUMBER OF CHARACTERS ON PERCEPTION SERVER AND
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C AND IN PERCEPTION BUFFER (E.G., IF THERE IS ONE
C CHARACTER CURRENTLY BEING PERCEIVED AND TWO
C CHARACTERS IN THE BUFFER, THEN INFO(1,2) = 3)
C INFO(2,2) = MAXIMUM NUMBER OF CHARACTERS WHICH CAN BE
C SERVICED AND BUFFERED FOR PERCEPTION
C
C INFO(1,3) = NUMBER OF CHARACTERS ON EXECUTION SERVER AND IN
C RECOGNITION BUFFER.
C INFO(2,3) = MAXIMUM NUMBER OF CHARACTERS WHICH CAN BE
C SERVICED AND BUFFERED FOR RECOGNITION.
C
C INFO(1,4) = NUMBER OF CHARACTERS ON EXECUTION SERVER AND IN
C EXECUTION BUFFER.
C INFO(2,4) = MAXIMUM NUMBER OF CHARACTERS WHICH CAN BE
C SERVICED AND BUFFERED FOR EXECUTION.
C
C INTERC(15) ,INTERG(15): CONTAINS IN COLUMN I THE INTERCHARACTER
C (INTERGROUP) INTERVAL FOR RATES OF, RESPECTIVELY, 6,8,10,12
C 14,16,18,20 GROUPS PER MINUTE.
C
C KEEP(41,46): CONTAINS NUMBER OF TIMES IN KEEP(I,J) CHARACTER J IS
C TYPED WHEN CHARACTER I WAS PRESENTED. NOTE THAT ENTRIES
C IN KEEP(I,J) CAN BE NO GREATER THAN ENTRIES IN CONFUS(I,J)
C BECAUSE CHARACTERS CAN DECAY AT A NODE OR NOT GAIN ENTRY
C TO A NODE AFTER THEY ARE CONFUSED IN THE PERCPETION SERVER.
C NOTE THAT BEFORE SUBROUTINE SOUT, KEEP(IA,42),KEEP(IA,43)
C AND KEEP(IA,45) ARE BLANK; KEEP(IA,44) CONTAINS THE PERIOD
C COUNT. SUBROUTINE SOUT PUTS INTO KEEP(IA,42) THE ENTRY
C IN KEEP(IA,IA), I.E., THE NUMBER OF CORRECT RESPONSE. IT
C PUTS INTO KEEP (IA, 43) THE NUMBER OF INCORRECT CHARACTER
C CHARACTER RESPONSES. AND IT PUTS INTO KEEP(IA,45) THE NUMBER
C OF NO RESPONSES (BY SUMMING OVER KILL(IA,J),J=1,8).
C
C KEEPSP (5): KEEPSP (I) CONTAINS NUMBER OF CHARACTERS IN ITH POSITION
C IN A GROUP WHICH MADE IT THROUGH EXECUTION STATE. YIELDS
C STANDARD SERIAL POSITION CURVES. ONLY CORRECT CHARACTERS
C ARE COUNTED.
C
C KILL(41,8): CONTAINS NUMBER OF TIMES CHARACTER IN ROW IS LOST
C BECAUSE OF BUMPOUT, DECAY OR PERIOD. COLUMNS 1 - 4 CONTAIN
C ARRIVAL, PERCEPTION, RECOGNITION AND EXECUTION BUMPOUT;
C NEXT 4 COLUMNS CONTAIN DECAY. FOR EXAMPLE, IF KILL(11,3) = 4,
C THIS MEANS THAT CHARACTER 11 ON LEAVIiNG THE PERCEPTION SERVER
C HAS BEEN BUMPED 4 TIMES BECAUSE THE RECOGNITION BUFFER IS
C FULL. IF KILL(21,6)=5, THIS MEANS THAT CHARACTER 21 ON THE
C PERCEPTION BUFFER HAS DECAYED 5 TIMES BECAUSE THE PERCEPTION
C SERVER IS FULL. NOTHING IS BUMPED OUT FROM THE ARRIVAL
C QUEUE NOR DOES ANY DECAY OCCUR. FURTHERMORE, NOTHING IS
C BUMPED OUT OF THE RECOGNITION BUFFER NOR DOES DECAY WITH
C COMPLETE LOSS OCCUR. RATHER, PERIOD IS TYPED. THUS,
C IF KILL(10,4) = 6, THIS MEANS THAT SIX PERIODS WERE
C TYPED BECAUSE THE CHARACTER BUFFER SPACE IN THE EXECUTION
C BUFFER WAS EXCEEDED. IF KILL(10,8) = 2, THIS MEANS THAT
C TWO PERIODS WERE TYPED BECAUSE THE DECAY TIME IN THE
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C EXECUTION BUFFER WAS EXCEEDED.
C
C DATLAT(41,45): CONTAINS RESPONSE TIMES FROM SUBJECTS. LIKE MATRIX
C ERROR OTHERWISE EXCEPT FOR NO ENTRY IN COLUMN 45 (SINCE
C NO TIMES FOR NO RESPONSES).
C
C STATEC(30,4),STATED(30,4): COLUMN 1 CONTAINS INFORMATION ON THE
C ARRI\AL PROCESS; COLUMN 2 CONTAINS INFORMATION ON THE
C PERCEPTION PROCESS; COLUMN 3 CONTAINS INFORMATION ON
C THE RECOGNITION PROCESS; AND COLUMN 4 CONTAINS INFORMATION
C ON EXECUTION PROCESS IN BOTH STATEC AND STATED.
C
C STATEC(I,I) = MORSE CHARACTER CURRENTLY ARRIVING
C STATED(I,1) = REMAINING DURATION OF MORSE CHARACTER
C
C STATEC(1,2) = MORSE CHARACTER CURRENTLY BEING PERCEIVED; NOTE
C THAT THIS IS NOT NECESSARILY THE CHARACTER WHICH
C IS SENT IF THERE IS A CONFUSION
C STATED(1,2) = REMAINING DURATION OF PERCEPTION PROCESS
C STATEC(2,2) = MORSE CHARACTER IN PERCEPTION BUFFER (IF ANY)
C STATED(2,2) = REMAINING DECAY TIME OF ABOVE CHARACTER
C STATEC(3,2) = ADDITIONAL MORSE CHARACTER IN PERCEPTION
C BUFFER (IF ANY)
C STATED(3,2) = REMAINING DECAY TIME OF THIS MORSE CHARACTER
C (AND SO ON FOR EACH ADDITIONAL MORSE CHARACTER IN PERCEPTION
C BUFFER)
C
C STATEC(1,3) = MORSE CHARACTER CURRENTLY BEING RECOGNIZED
C STATED(1,3) = REMAINING DURATION OF RECOGNITION PROCESS
C STATEC(2,3) = MORSE CHARACTER IN RECOGNITION BUFFER (IF ANY)
C STATED(2,3) = REMAINING DECAY TIME OF ABOVE CHARACTER
C STATEC(3,3) = ADDITIONAL MORSE CHARACTER IN RECOGNITION
C BUFFER (IF ANY)
C STATED(3,3) = REMAINING DECAY TIME OF THIS MORSE CHARACTER
C (AND SO ON FOR EACH ADDITIONAL MORSE CHARACTER IN RECOGNITION
C BUFFER)
c
C STATEC(1,4) = MORSE CHARACTER CURRENTLY BEING RESPONDED TO
C STATED(1,4) = REMAINING DURATION OF ABOVE CHARACTER
C STATEC(2,4) = MORSE CHARACTER IN RESPONSE BUFFER (IF ANY)
C STATED(2,4) = REMAINING DECAY TIME OF ABOVE CHARACTER
C (AND SO ON)
C
C STATEP (30,4): CONTAINS IN ROW I AND COLUMN J POSITION OF CHARACTER
C IN STREAM. FOR EXAMPLE, IF THE GROUPS ARE OF SIZE 5
C AND THE CHARACTER CURRENTLY ON THE RECOGNITION SERVER IS
C THE SECOND CHARACTER IN A STREAM, THEN STATEP(1,2) = 2.
C
C STATEX(30,4),STATEY(30,4): STATEX IS INDENTICAL TO STATEC EXCEPT
C FOR THE FACT THAT THERE IS NO CHANGE TO THE IDENTITY OF
C A CHARACTER MISPERCIEVED. THIS MAKES IT POSSIBLE TO TRACK
C THE RESPONSE TIME TO THE CHARACTER WHICH WAS SENT. STATEY
C KEEPS TRACK OF THE TOTAL TIME THAT A CHARACTER SPENDS IN
C THE SYSTEM. MEASUREMENT STARTS FROM THE POINT WHERE THE
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C CHARACTER HAS ARRIVED (I.E., MEASUREMENT STARTS WHEN THE
C CHARACTER ENTERS THE PERCEPTION QUEUE OR SERVER) AND
C CONTINUES UNTIL THE RESPONSE HAS BEEN EXECUTED.
C
C STIMBUF(820): STIMBUF CONTAINS THE CHARACTER, INTERCHARACTER CODE OR
C INTERGROUP CODE. THE SPACE BETWEEN CHARACTERS IS IDENTIFIED
C BY THE INTEGER 42; THE SPACE BETWEEN
GROUPS
C IS IDENTIFIED BY THE INTEGER 43. THE FIRST CHARACTER APPEARS
C IN STIMBUF(1), THE SECOND CHARACTER IN STIMBUF(2), AND SO ON.
C NOTE THAT STIMBUF MUST BE TWICE THE SIZE OF CHRBUF.
C
C STIMDUR(43): CONTAINS DURATIONS OF 1 - 26 LETTERS, 5 SPECIAL
C CHARACTERS, 10 DIGITS AND BOTH INTERCHARACTER (42) AND
C INTERGROUP (33) INTERVALS. NOTE THAT DURATION OF
C INTERCHARACTER AND ITNERGROUP INTERVALS WILL VARY WITH GPM.
C THIS WILL SUPERCEDE WHATEVER IS READ INTIALLY INTO
C STIMDUR.
C
C TIME (41,45): CONTAINS IN TIME(I,J) FOR EVERY TIME CHARACTER I
C IS SENT AND CHARACTER J IS TYPED A RUNNING SUM OF THE
C RESPONSE TIME. AT THE END, IN SUBROUTINE SOUT,
C THE AVERAGE IS COMPUTED IN TIME BY DIVIDING TIME (I,J)
C BY KEEP(I,J).
C
C TIMESP (5): TIMESP (I) CONTAINS RESPONSE TIMES OF ALL CORRECTLY
C RECOGNIZED CHARACTERS FROM POSITION I IN A GROUP. AT END
C TIMESP YIELDS AVERAGE. TOTAL OBSERVATIONS FOR ITH CHARACTER
C IN STREAM IS KEPT IN KEEPSP(I).
C
C
C
C
C DEFINE FUNCTIONS
C
C SGAMMA(...): GENERATES PSEUDO RANDOM
C GAMMA RANDOM VARIABLE USING ROUTINE IN AVERILL M. LAW AND
C W. DAVID KELTON, SIMULATION MODELING AND ANALYSIS,
C NEW YORK, MCGRAW HILL, 1982, PAGE 257.
C
C
C
C
C DEFINE SUBROUTINES:
C
C SARR(... ): THIS CREATES NEXT STATE GIVEN MINIMUM HAS OCCURRED ON
C ARRIVAL SERVER. ACTIONS MUST BE TAKEN TO THE INFO AND
C STATE MATRICES FOR BOTH THE ARRIVAL AND PERCEPTION PROCESSES:
C A-S) IF THERE ARE MORE ARRIVALS CHANGE STATEC(i,i) TO
C STIMBUF(NELEM); CHANGE STATED(i,i) TO RANDOM DURATION.
C OTHERWISE STATEC(I,I) = STATED(i,i) = 0.
C A-I) IF THERE ARE MORE ARRIVALS DECREMENT INFO(2,1);
C OTHERWISE SET INFO(I,I) TO ZERO.
C P-S) IF ARRIVIAL IS A CHARACTER (NOT A BLANK TIME) AND
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C IF THERE IS ROOM IN THE PERCEPTION BUFFER THEN
C SET STATEC(INFO(1,2)+1,2) = OLD STATEC(I,I); SET
C STATED(INFO(1,2)+1,2) = RANDOM DURATION. IF
C ARRIVAL IS A CHARACTER AND NO ROOM IN RECOGNITION
C BUFFER, PUT DISPLACED CHARACTER IN KILL DEPOSITORY
C P-I) IF ARRIVAL IS A CHARACTER AND IF THERE IS ROOM IN THE
C PERCEPTION BUFFER, THEN INFO(1,2) = INFO(1,2) + 1
C
C
C SCHRBUF(...): PUTS INTO CHRBUF(410) RANDOM PERMUTATIONS
C OF DIGITS 1 - 41 (CORRESPONDING TO IDENTIFIERS FOR MORSE
C CHARACTERS, INCLUDING SPECIAL CHARACTERS)
C
C SEXEBUF(...): PERFORMS SAME OPERATIONS AS
C SPERBUF IN EXECUTION BUFFER
C
C SGPM(...): PUTS INTO STIMDUR(42) THE INTERCHARACTER
C DURATION FROM INTERC(I) WHERE INTERC(i) IS 6 GPM AND
C INTERC(15) IS 20 GPM. SIMILARLY FOR STIMDUR(43) AND
C INTERG(J).
C
C SMINI(...): IDENTIFIES CHARACTER WITH MINIMUM
C REMAINING PROCESSING TINE AND SETS KROW AND KCOL TO THE
C ROW AND COLUMN ENTRY IN STATE OF THE DURATION OF THIS
C CHARACTER. FOR EXAMPLE, SUPPOSE:
C
C STATED(1,1) = 50, STATED(1,2) = 100, STATED(2,2) = 110,
C STATED(1,3) = 200, STATE(1,3) = 120 AND STATE(1,4) = 80
c
C THEN KROW = 1 AND KCOL = 1 SINCE 50 IS THE MINIMUM DURATION.
C
C SPER(...): IN STATES WHERE THE MINIMUM DURATION IS IN THE
C PERCEPTUAL SERVER, SPER MAKES THE NECESSARY CHANGES. NOTE
C THIS IS WHERE A PERIOD IS INTRODUCED. SPECIFICALLY,
C IF THE TIME IT TAKES TO PERCEIVE A STIMULUS IS LONGER
C THAN SOME TIME RCRIT, THEN THE STIMULUS IS CODED AS
C A PERIOD. OTHERWISE (I.E., IF THE SERVICE TIME IS
C LESS THAN THE CRITICAL TIME) THEN WE USE THE CONFUSION
C MATRIX TO DETERMINE WHETHER THE CHARACTER IS CODED
C CORRECTLY OR INCORRECTLY.
C
C SPERBUF(...): IN STATES WHERE THE MINIMUM DURATION
C IF IN THE PERCEPTUAL BUFFER, SPERBUF RF4MOVES THE
C MINIMUM DURATION PROCESS FROM STATEC AND STATED AND MOVES
C EVERYTHING ABOVE IT UP ONE IN THE QUEUE. FOR EXAMPLE, SUPPOSE
C WE HAVE FIVE ITEMS IN THE PERCEPTUAL BUFFER AND ONE ON THE
C SERVER. WE APPLY SMINI AND OBTAIN:
C
C STATED(1,2) = 50, STATED(2,2) = 150, STATED(3,2) = 0,
C STATED(4,2) = 170, STATE(5,2) = 120 AND STATE(6,2) = 130.
C
C SPERBUF MOVES THE THIRD (STATED(4,2)), FOURTH (STATED(5,2))
C AND FIFTH (STATED(6,2)) UP ONE AND REPLACES STATE(6,2) WITH 0,
C SO THAT WE HAVE:
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C
C STATED(1,2) = 50, STATED(2,2) = 150, STATED(3,2) = 170,
C STATED(4,2) = 120, STATE(5,2) = 130 AND STATE(6,2) = 0.
C
C NOTE THAT THE SAME CHANGES ARE MADE TO STATEC
C
C SPERERR(JTEMPC,CONMAT,CONFUS,SEED): LOOKS AT CONFUSION MATRIX AND DECIDES
C WHETHER TO REPLACE CURRENT CHARACTER WHICH HAS JUST BEEN
C PERCEIVED WITH ANOTHER CHARACTER. FOR EXAMPLE, SUPPOSE THAT
C THERE WERE FOUR CHARACTERS. SET P(JII) EQUAL TO THE
C PROBABILITY OF PERCEIVING J GIVEN I. SUPPOSE P(111) = .4,
C P(211) = .3, P(311) = .2 AND P(411) = .1. THEN, IN CONMAT
C IN ROW 1 WE CODE .4, .7, .9 AND 1.0. WE THEN GENERATE
C A VALUE FOR A UNIFORM[0,1] RANDOM VARIABLE AND DETERMINE
C WHETHER THIS VALUE IS IN THE INTERVAL [0,.4). IF SO,
C THEN THE CHARACTER 1 IS CORRECTLY CODED AS A 1. IF NOT,
C THEN WE DETERMINE WHETHER THE VALUE IS IN THE INTERVAL
C [.4,.7). IF SO, THEN A 2 IS INCORRECTLY CODED AS A l.
C AND SO ON.
C
C SRECBUF(STATEC,STATED,INFO,KROW,KCOL,KILL): PERFORMS SAME OPERATIONS AS
C SPERBUF IN RECOGNITION BUFFER
C
C SSTIM(CHRBUF,STIMBUF,NGROUP,NREP,NSTIM): PUTS FIRST CHARACTER IN CHRBUF
C INTO STIMBUF, THEN INTERCHARACTER IDENTIFIER, THEN NEXT
C CHARACTER IN CHRBUF, AND SO ON UNTIL NGROUP CHARACTERS HAVE
C BEEN PLACED IN STIMBUF, AT WHICH POINT AN INTERGROUP
C IDENTIFIER IS PLACED IN STILMBUF. THIS IS REPEATED FOR
C EACH SUCCEEDING GROUP.
C
C SSUB(STATEC7 STATED,INFO,KROW,KCOL): SUBTRACTS THE MINIMUM DURATION OF THE
C PROCESS FOUND IN SMIN FROM THE DURATION OF EACH OF THE
C PROCESSES IN STATED, LEAVING THE REMAINING DURATION FOR EACH
C PROCESS. FOR EXAMPLE, AFTER SSUB OPERATION ON THE OUTPUT
C OF SMIN ABOVE, WE WOULD HAVE:
C
C STATED(I,1) = 0, STATED(I,2) = 50, STATED(2,2) = 60,
C STATED(1,3) = 150, STATE(1,3) = 120 AND STATE(1,4) = 30.
C
C
C
C
C TYPE VARIABLES

INTEGER NCHR
INTEGER NCHRBUF
INTEGER NGPM
INTEGER NCNT
INTEGER KROW,KCOL !ROW AND COLUMN MARKERS OF MIN DUR IN STATE
INTEGER NELEM
INTEGER NGROUP,NREP,NSTIM
INTEGER NOUT
INTEGER NPER
INTEGER*4 SEED
REAL RCRIT
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C
C
C
C
C TYPE MATRICES

INTEGER CHRBUF (410)
INTEGER CONFUS(41,41)
INTEGER INFO(2,4)
INTEGER KEEP (41, 46)
INTEGER KEEPSP (5)
INTEGER KILL(41,8)
INTEGER STATEC (30, 4)
INTEGER STATEP (30, 4)
INTEGER STATEX(30,4)
INTEGER STIMBUF (820)
REAL ALPHA(2,4),BETA(2,4)
REAL CONMAT (41, 45)
REAL DATERR(41,45),DATLAT(41,45)
REAL INTERC (15) ,INTERG (15)
REAL STATED (30, 4)
REAL STATEY(30,4)
REAL STI1DUR(43)
REAL TIME(41,45)
REAL TINESP (5)

C
C
C
C
C DATA INITIALIZATION STATEMENTS

DATA SEED/98753/
DATA CONFUS/1681*0/
DATA INFO/8*0/
DATA INTERC/1260.,1030.,860. ,729.,624.,537.,466.,405.,353.,
C 308.,268.,233.,203.,175.,150./
DATA INTERG/2940.,2402.,2008.,1701.,1455.,1254.,1087.,
C 945.,824.,718.,626.,545.,473.,408.,350./
DATA KEEP/1886*0/
DATA KEEPSP/5*0/
DATA KILL/328*0/
DATA STATEC/120*0/
DATA STATED/120*0./
DATA STATEP/120*0/
DATA TIME/1845*0./
DATA TIMESP/5*0./

C
C OPEN FILES

OPEN (tNIT=1, FILE=' MORSE. IN' ,STATUS=' OLD' ,READONLY)
OPEN (UNIT=2, FILE='MORSE .OUT' ,STATUS=' NEW')
OPEN (UNIT=3, FILE='MORSE .DAT' ,STATUS=' OLD' ,READONLY)

C
C READ IN MATRIX INFORMATION: SIMULATION AND DATA

CALL SINP (STATEC, STATED, INFO, STIMDUR, ALPHA, BETA,
C STATEX,STATEY)
CALL SDAT (DATERR,DATLAT, CONMAT)
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C
C BOUNCE BACK HERE FOR SIMULATION USING NEW GPM
99 CONTINUE
C
C INITIALIZE VARIABLES

CALL SINV(INFO, NCHR, NCHRBUF,NGPM, NGROUP,NREP,NSTIM, NELEM, NCNT,
C NOUT, NPER, RCRIT, KCOPB, SEED)

C
C RANDOMIZE INPUT STREAM OF CHARACTERS

CALL SCHRBUF(SEED,CHRBUF,NCHR, NOUT)
C
C INSERT INTERCHARACTER AND INTERGROUP IDENTIFIERS INTO STREAM

CALL SSTIM(CHRBUF,STIMBUF,NGROUP,NREP,NSTIM, NOUT)
C
C SET INTERCHARACTER AND INTERGROUP DURATION FOR A PARTICULAR RATE (GROUPS
C PER MINUTE)

CALL SGPM(STIMDUR, INTERC, INTERG,NGPM)
C
C BEGIN CREATING STATES
100 CONTINUE !BOUNCE BACK HERE IF MORE STATES
C NO MORE STATES IF NOTHING ACTIVE ON SERVERS

IF((INFO(1,1)+INFO(1,2)+INFO(1,3)+INFO(1,4)).EQ.0) GOTO 999
C
C OBTAIN MINIMUM PROCESSING DURATION

CALL SMINI(STATEC, STATED, INFO, KROW,KCOL,NOUT)
C
C SUBTRACT MINIMUM PROCESSING DURATION

CALL SSUB(STATEC, STATED, INFO, KROW, KCOL)
C
C IF ARRIVAL COMPLETES FIRST THEN:

IF(KCOL.EQ.1) THEN
NELEM = NELEM + 1
CALL SARR(STATEC, STATED,INFO, KROW, KCOL, STIMBUF,NELEM,

C KILL, SEED, STIMDUR, ALPHA, BETA, STATEX, STATEY, STATEP,
C NOUT,DATLAT,KCOPB)

GO TO 100
END IF

C
C IF CHARACTER ON PERCEPTION SERVER COMPLETES FIRST THEN:

IF((KCOL.EQ.2).AND.(KROW.EQ.1)) THEN
CALL SPER(STATEC, STATED, INFO, KROW, KCOL, STIMBUF,NELEM,

C KILL, CONMAT,CONFUS,SEED,ALPHA, BETA, STATEX, STATEY,
C STATEP,NOUT,NPER, RCRIT,DATLAT)

GO TO 100
END IF

C
C IF CHARACTER IN PERCEPTION BUFFER COMPLETES FIRST, THEN
C SQUASH PERCEPTION BUFFER

IF((KCOL.EQ.2).AND.(KROW.GT.1)) THEN
CALL SPERBUF(STATEC, STATED, INFO, KROW, KCOL,KILL, STATEX,

C STATEY, STATEP,NOUT)
GO TO 100

END IF
C
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C IF CHARACTER ON RECOGNITION SERVER COMPLETES FIRST THEN:
IF((KCOL.EQ.3).AND.(KROW.EQ.1)) THEN

CALL SREC (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,
C KILL, SEED,ALPHA,BETA,STATEX,STATEY,STATEP,NOUT,
C DATLAT)

GO TO 100
END IF

C
C IF CHARACTER IN RECOGNITION BUFFER COMPLETES FIRST, THEN
C SQUASH RECOGNITION BUFFER

IF((KCOL.EQ.3) .AND. (KROW.GT.1)) THEN
CALL SRECBUF (STATEC, STATED, INFO, KROW, KCOL, KILL, STATEX,

C STATEY, STATEP,NOUT)
GO TO 100

END IF
C
C IF CHARACTER ON EXECUTION SERVER COMPLETES FIRST THEN:

IF((KCOL.EQ.4) .AND. (KROW.EQ.1)) THEN
CALL SEXE (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,

C KEEP, KILL,ALPHA, BETA, STATEX, STATEY, TIME, STATEP, KEEPSP,
C TIMESP, NOUT, DATLAT)

GO TO 100
END IF

C
C IF CHARACTER IN EXECUTION BUFFER COMPLETES FIRST, THEN
C SQUASH EXECUTION BUFFER

IF((KCOL.EQ.4) .AND. (KROW.GT.1)) THEN
CALL SEXEBUF (STATEC, STATED, INFO, KROW, KCOL, KILL,

C STATEX, STATEY, STATEP,NOUT)
GO TO 100

END IF
C
C GET HERE WHEN NO MORE STATES
999 CONTINUE
C
C
C WRITE SELECTED OUTPUT

CALL SOUT (INFO,KEEP,KEEPSP,KILL,CONFUS,TIME,TIMESP,NCHR,NCNT,
C NOUT, NGPM, NPER, DATERR,DATLAT, RCRIT, KCOPB)

C
C ZERO INPUT TO START SIMULATION AT NEW RATE

CALL SZERO (CONFUS, NCHR, INFO, NCNT, KEEP, KEEPSP, KILL, STATEC,
C STATEP, STATEX, STATED, STATEY, TIME, TIMESP, 1'PER)
GO TO 99

C
C END MAIN

END
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SUBROUTINE SINV
C
C
C
C
C

SUBROUTINE SINV (INFO, NCHR, NCHRBUF, NGPM, NGROUP, NREP, NSTIM, NELEM,
C NCNT, NOUT, NPER, RCRIT, KCOPB, SEED)
INTEGER KCOPB
INTEGER NCHR
INTEGER NCHRBUF
INTEGER NCNT
INTEGER NGPM
INTEGER NELEM
INTEGER NGROUP, NREP, NSTIM
INTEGER NOUT
INTEGER NPER
INTEGER*4 SEED
INTEGER INFO(2,4)
REAL RCRIT

8 FORMAT(' ENTER 1 TO CONTINUE, 0 TO STOP =- $
10 FORMAT(' ENTER ELEMENT IN STREAM: 0 =
12 FORMAT(' ENTER GROUPS PER MINUTE: 6 - 20 =
14 FORMAT(' DO YOU WANT FULL OUTPUT: 1/0 = ,S
16 FORMAT(' ENTER CRITICAL VALUE IN MS: =-l$
18 FORMAT(' ENTER 1 FOR COPY BEH; 0 NO COPB = $
C BEGIN MAIN BODY OF PROGRAM

WRITE (5,*)
WRITE (5,8)
READ (5, *) NSTOP
IF(NSTOP.EQ.0) THEN

WRITE (5, *)
WRITE(5,*) ' OUTPUT IN FILE MORSE.OUT'
WRITE (5, *)
STOP

END IF
JNCNT = (INFO (2,1) -1) /2 + 1
WRITE (5, *)
WRITE(5,*) ' NUMBER OF STIMULI IN INPUT STREAM = ',INFO(2,1)
WRITE (5,*) ' NUMBER OF CHARACTERS IN INPUT STREAM = ',JNCNT

C ------- NCNT
NCNT = INFO (2, 1)

C -------- NELEM
NELEM = 0

C -------- NGPM
WRITE (5, *)
WRITE (5, 12)
READ (5, *) NGPM
IF((NGPM.LT.6) .OR. (NGPM.GT.20)) THEN

WRITE(5,*) 'GROUP SIZE INCORRECT; STOP PROGRAM
STOP

END IF
C ------- RCRIT

WRITE (5,*)
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WRITE (5,16)
READ (5,*) RCRIT

C-------KCOPB
WRITE (5, *)
WRITE (5, 18)
READ(5,*) KCOPB

C ----- NOUT
WRITE (5,*)
WRITE(5,14)
READ (5, *) NOUT

C ----- NGROUP
NGROUP = 5

C ----- NREP
NREP = 50

C ------ NSTIM
NSTIM = 2*NGROUP*NREP

C CHECK THAT THERE ARE NOT TOO MANY STIMULI FOR PROGRAM TO HANDLE
IF(INFO(2,1) .GT.NSTIM) THEN

WRITE(5,*) ' NUMBER OF ARRIVING STIMULI TOO LARGE: '
WRITE(5,*) ' INFO(2,1) GT NSTIM = NREP*NGROUP
STOP

END IF
C NCHR

NCHR = 31
C ------ NCHRBUF

NCHRBUF = 410
C CHECK THAT THERE ARE NOT TOO MANY STIMULI THAT MUST BE CONSTRUCTED

IF (NGROUP*NREP.GT.NCHRBUF) THEN
WRITE(5,*) ' NEED TO ENLARGE MATRICES CHRBUF AND STIMBUF
WRITE(5,*) ' SO THAT NGROUP*NREP GT NCHRBUF WHERE CHRBUF
WRITE(5,*) ' HAS DIMENSION NCHRBUF AND STIMBUF HAS DIMEN-
WRITE(5,*) ' SION 2*NCHRBUF '

STOP
END IF

C ------ NPER
NPER = 0
RETURN
END
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SUBROUTINE SINP
C
C
C
C
C

SUBROUTINE SINP (STATEC, STATED, INFO, STIMDUR, ALPHA, BETA,
C STATEX,STATEY)
INTEGER INFO(2,4)
INTEGER STATEC (30,4),STATEX (30,4)
REAL ALPHA(2,4),BETA(2,4)
REAL STATED (30,4),STATEY(30,4)
REAL STIMDUR(43)

10 FORMAT(IX,414, 10F0.4)
12 FORMAT (20 (lX, 12F5.0/))
14 FORMAT(8(1X,F7.2))
C
C BEGIN INPUTTING INFORMATION

DO 100 IA = 1,2
READ(1,*) (INFO(IA, J) ,J=-,4)

100 CONTINUE
DO 240 IA = 1,2
READ(1,*) (ALPHA(IA,J),J=1,4), (BETA(IA,J),J=1,4)

240 CONTINUE
DO 110 IA = 1,30
DO 110 IB = 1,4
STATEC(IA,IB) = 0.
STATED(IA, IB) = 0.

110 CONTINUE
STATEC(I,1) = 42 !INITIALIZE 0TH STIMULUS TO 42
STATED(I,1) = 50. !WITH A DURATION OF 50 MS
DO 112 IA = 1,30
DO 112 IB = 1,4
STATEX(IA,IB) = STATEC(IA,IB)
STATEY(IA,IB) = STATED(IA,IB)

112 CONTINUE
DO 120 IA = 1,42,3
READ(1,*) (STIMDUR(J),J=IA,IA+2)

120 CONTINUE
READ(1,*) STIMDUR(43)

C
C OUTPUT INFORMATION TO FILE ON WHAT WAS READ IN

WRITE (5, *)
WRITE(5,*) ' WARNING - WARNING : STIM DURATION OF SPEC CHAR WRONG
WRITE (5, *)
WRITE(2,*) STIMULUS DURATIONS OF 1 - 31 CHARACTERS AND BLANKS
WRITE(2,12) (STIMDUR(J) ,J=1,33)
WRITE (2, *)
WRITE(2,*) DATA IN ALPHA AND BETA AT START
DO 260 IA = 1,2
WRITE(2,14) (ALPHA(IA,J),J=1,4), (BETA(IA,J),J=1,4)

260 CONTINUE
WRITE (2, *)
WRITE(2,*) PERCEPTION (SERV/DEC): ',ALPHA(1,2)*BETA(1,2),
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C ALPHA(2,2) *BETA(2,2)
WRITE(2,*) ' PERCEPTION (SERV/DEC): ',ALPHA(1,3)*BETA(1,3),
C ALPHA (2,3) *BETA (2,3)
WRITE(2,*) ' PERCEPTION (SERV/DEC): ',ALPHA(1,4)*BETA(1,4),
C ALPHA (2, 4) *BETA (2, 4)
WRITE (2, *)
WRITE(2,*) ' DATA IN INFO AT START
DO 220 IA = 1,2
WRITE(2,*) (INFO(IA,J),J=1,4)

220 CONTINUE
WRITE (2, *)
WRITE(2,*) ' INPUT IN STATEC AND STATED AT START
DO 200 IA 1,5
WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)

200 CONTINUE
WRITE (2, *)
WRITE(2,*) ' INPUT IN STATEX AND STATEY AT START '

DO 210 IA = 1,5
WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)

210 CONTINUE
C
C CHECK ON VALIDITY OF INPUT INFORMATION

DO 400 IA = 1,2
DO 400 IB = 1,4
IF(ALPHA(IA,IB) .LE.1) THEN

WRITE(5,*) ' ALPHA LESS THAN 1; ALTERNATIVE GAMMA GENERATOR
WRITE(5,*) ' IS NEEDED; SEE LAW AND KELTON, PAGE 255

STOP
END IF

400 CONTINUE
RETURN
END
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SUBROUTINE SDAT
C
C
C
C
C

SUBROUTINE SDAT (DATERR, DATLAT, CONb4AT)
REAL CONMAT(41,45)
REAL DATERR(41,45),DATLAT(41,45)

10 FORMAT(lX,1OF1O.4)
DO 100 IA = 1,41
READ(3,1O) (DATERR(IA,J) ,J=1, 45)

100 CONTINUE
DO 200 IA =1,41
READ (3, 10) (DATIJAT (IA, J), 1=1,45)

200 CONTINUE
DO 300 IA =1,41
RDEN = DATERR(IA,42) + DATERR(IA,43)
IF(RDEN.GT.0) THEN

IF(IA.EQ.1) THEN
CONMAT(IA,1) = DATERR(IA,42)/RDEN
CONMAT(IA,2) = 1.0

ELSE
CONMAT(IA,1) = DATERR(IA,43)/RDEN
CONMAT(IA,IA) = 1.0

END IF
END IF

300 CONTINUE
RETURN~
END
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SUBROUTINE SCHRBUF
C
C
C
C
C

SUBROUTINE SCHRBUF (SEED,CHRBUF,NCHR,NOUT)
INTEGER NOUT
INTEGER NCHR
INTEGER*4 SEED
INTEGER CHRBUF (410)
INTEGER ICHR(41)
REAL RCHR(41)

10 FORMAT(2(1X,1614,/))
12 FORMAT(3(1X,12F6.4,/))

DO 900 IX = 1,10
DO 100 IA = 1,NCER
RCHR(!A) = RAN(SEED)

100 CONTINUE
DO 200 IA = 1,NCHR
RMIN = 2.
DO 210 lB = 1,NCHR
IF(RCHR(IB) .LT.RMIN) THEN

JPOS = lB
RMIN = RCHR(IB)

END IF
210 CONTINUE

ICHR(JPOS) = IA
RCHR(u±eOS) = 2.

200 CONTINUE
DO 300 IIA = 1,NCHR
JA = NCHR*(IX-1) + IA
CHRBUF(JA) = ICHR(IA)

300 CONTINUE
900 CONTINUE

REThRMN
END
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SUBROUTINE SOUT
C
C
C
C
C

SUBROUTINE SOUT (INFO,KEEP,KEEPSP,KILL,2-ONFUS,TIME,TIMESP,NCHR,
C NCNT, NOUT, NGPM, NP ER, DATERR, DATLAT,
C RCRIT,KCOPB)
INTEGER KCOPB
INTEGER NCHR, NCNT, NOUT, NGPM, NPER
INTEGER INFO(2,4)
INTEGER CONFUS (41, 41)
INTEGER KEEP (41,46)
INTEGER KEEPSP (5)
INTEGER KILL(41,8)
REAL RCRIT
REAL DATERR(41,45) ,DATLAT (41, 45)
REAL DATOUT(2,8)
REAL PRDERR.(41, 45)
REAL PRDOUT(2,8)
REAL TIME(41,45)
REAL TIMESP (5)

10 FORMAT(1X,1014)
12 FORMAT(15(lX,I4))
14 FORMAT(lX,I3,1X,F7.4,lX,10013)
16 FORMAT(1X,I3,lX,15F7.1/5X,15F7.1/5X,15F7.1)
18 FORMAT(1X,10F12.6)
20 FORMAT(1X,10F12.4)
C INITIALIZE MATRICES, VARIABLES

DO 40 IA = 1,2
DO 40 lB = 1,8
PRDOUT(IA,IB) = 0.
DATOUT(IA,IB) = 0.

40 CONTINUE
DO 42 :.A = 1,41
DO 42 lB = 1,45
PRDERR (IA, IB) = 0.

42 CONTINUE
JKEEP = 0
JKILL = 0
JOFF = 0
JPER = 0
KPD = 0
KPB = 0
DO 80 IA = 1,NCHR
DO 80 lB = 1,45
IF(IB.EQ.44) THEN

JPER = KEEP(IA,44) + JPER
END IF
IF(IB.NE.IA) THEN

JOFF = KEEP (IA, IB) + JOFF
END IF
JKEEP =KEEP(IA,IB) + JKEEP
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80 CONTINUE
DO 85 IA = 1,NCHR
DO 85 IB = 1,8
IF(IB.EQ.2) KPB = KPB + KILL(IA, IB)
IF(IB.EQ.6) KPD = KPD + KILL(IA, IB)
JKILL = KILL(IA,IB) + JKILL

85 CONTINUE
JNCNT = (NCNT - 1)/2 + 1
RNCNT = JNCNT
JKEEPS = 0
DO 86 IA = 1,5
JKEEPS = KEEPSP (IA) + JKEEPS

86 CONTINUEc
C FIND PREDICTED ERROR PERCENTAGES: NEED TO ASSIGN COUNTS TO
C KEEP (IA, 42) = KEEP (IA, IA), KEEP (IA, 43) = CHARACTERS
C TYPED AS JA.NE.IE, KEEP(IA,44) = PERIODS,
C KEEP(IA,45) = NO RESPONSES, AND KEEP(IA,46) = KEEP (IA,I)
C + ... + KEEP (IA, 45). USED AS DENOMINATOR FOR ROW
C ERROR PROBABILITIES IN PRDERR
C TO BEGIN, CONSTRUCT KEEP (IA, 42)

DO 400 IA = 1,41
KEEP (IA, 42) = KEEP (IA, IA)

C NEXT CONSTRUCT KEEP (IA, 43)
JA = 0
DO 403 IB = 1,41
IF(IA.NE.IB) THEN

JA = KEEP (IA, IB) + JA
END IF

403 CONTINUE
KEEP (IA, 43) = JA

C KEEP(IA,44) ALREADY CONSTRUCTED SINCE RUNNING COUNT KEPT OF PERIODS
C CONSTRUCT KEEP (IA, 45)

DO 404 IB = 1,8
KEEP(IA,45) = KILL(IA,IB) + KEEP(IA,45)

404 CONTINUE
C KEEP(IA,46) SET TO SUM OF ALL KEEP + KILL RESPONSES TO STIMULUS IA.
C AT THE SAME TIME COMPUTE KEEP TO ERROR PERCENTAGES.

DO 406 IB = 1,45
IF (KEEP (IA,46) .NE.0) THEN

RNUM = KEEP (IA, IB)
RDEN = KEEP (IA, 46)
PRDERR(IA,IB) = RNUM/RDEN

END IF
406 CONTINUE
400 CONTINUE
C COMPUTE AVERAGE ERROR PERCENTAGES FOR CHARACTER CORRECT,
C CHARACTER INCORRECT, PERIOD AND NO RESPONSE

DO 410 IA = 1,41
DO 412 IB = 42,45
PRDOUT(1,IB-41) = KEEP(IA,IB) + PRDOUT(1,IB-41)

412 CONTINUE
410 CONTINUE

DO 414 IA = 1,4
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PRDOUT(2,IA) = PRDOUT(1,IA)/RNCNT
414 CONTINUE
C ALSO NEED TO FIND OBSERVED SUMMARY ERROR PERCENTAGES

DO 420 IA = 1,41
RSUM = 0.
DO 422 IB = 42,45
RSUM = DATERR(IA,IB) + RSUM

422 CONTINUE
DO 424 IB = 42,45
IF(RSUM.GT.0) THEN

DATOUT(1,IB-41) = DATOUT(1,IB-41) + 1.
DATOUT(2,IB-41) = DATOUT(2,IB-41) + DATERR(IA,IB)

END IF
424 CONTINUE
420 CONTINUE

DO 426 IA = 1,4
IF(DATOUT(1,IA) .NE.0) THEN

DATOUT (2, IA) = DATOUT (2, IA)/DATOUT (1, IA)
END IF

426 CONTINUE
C
C ALSO NEED TO COMPUTE RAW SUMS FOR PREDICTED LATENCIES; RAW SUMS
C ALREADY RECORDED FOR TIME(IA,J), J = 1,...,41. TIME(IA,42)
C SET TO TIME(IA,IA); TIME(IA,43) SET TO SUM OF CHARACTER
C ONLY RESPONSE TIMES; AND TIME(IA,44) ALREADY SET. NOTE
C THERE IS NO ENTRY IN TIME(IA,45) SINCE THERE IS NO TIME
C FOR NO RESPONSES.

DO 440 IA = 1,41
TIME(IA,42) = TIME(IA, IA)
DO 440 IB = 1,41
IF(IA.NE.IB) THEN

TIME(IA,43) = TIME(IA,IB) + TIME(IA,43)
END IF

440 CONTINUE
C FIND WEIGHTED AVERAGE SIMULATED (PREDICTED) LATENCIES.

DO 450 IA = 1,41
DO 450 IB = 42,45

PRDOUT(1,IB-37) = PRDOUT(1,IB-37) + TIME(IA,IB)
450 CONTINUE

DO 452 IA = 5,8
IF(PRDOUT(1,IA-4) .NE.0) THEN

PRDOUT (2, IA) = PRDOUT (1, IA)/PRDOUT (1, IA-4)
END IF

452 CONTINUE
C COMPUTE TIMES IN EACH CELL; CANNOT DO BEFORE ABOVE BECAUSE
C NEED TO KEEP SUMS IN TIME IN ORDER TO GET CORRECT
C WEIGHTED AVERAGES.

DO 454 IA = 1,NCHR
DO 454 IB = 1,NCHR
IF (KEEP (IA, IB) .NE.0) THEN

RA = KEEP(IA,IB)
TIME(IA,IB) = TIME(IA,IB)/RA

END IF
454 CONTINUE
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C FIND AVERAGE OBSERVED LATENCIES
DO 460 IA = 1,41
DO 464 lB = 42,45
IF(DATLAT(IA,IB) .GT.0) THEN

DATOUT(1,IB-37) = DATOUT(1,IB-37) + 1..
DATOUT(2,IB-37) = DATOUT(2,IB-37) + DATLAT(IA,IB)

END IF
IF(IB.EQ.42) THEN
END IF

464 CONTINUE
460 CONTINUE

DO 466 IB = 5,8
IF(DATOUT(1,IB) .NE.0) THEN

DATOUT(2,IB) = DATOUT(2,IB) /DATOUT(1,IB)
END IF

466 CONTINUE
C
C WRITE OUT SUMMARY INFORMATION

RKEEPS = JKEEPS
RPC = RKEEPS/RNCNT
WRITE (2, *)
WRITE(2,*) 'COPY BEHIND = 1, NO COPY BEHIND = 0 ',KCOPB
WRITE (2, *)
WRITE(2,*) 'GROUPS PER MINUTE (GPM) = ',NGPM
WRITE (2, *)
WRITE(2,*) 'CRITICAL TIME AT PERC SERVER = ',RCRIT
WRITE (2, *)
WRITE(2,*) ' TOT CHAR, KEEP, KILL = ',31NCNT,JKEEP,JKILL
WRITE (2, *)
WRITE(2,*) ' TOT CHAR, TOT COR, % COR = ',JNCNT,JKEEPS,RPC
WRITE (2, *)
WRITE(2,*) P(CORRECT), P(BAD CHAR), P(PERIOD), P(NO RESP)
WRITE(2,18) (PRDOUT(2,J),J=1,4)
WRITE(2,18) (DATOUT(2,J),J=1,4)
WRITE (2, *)
WRITE(2,*) RT(CORREC), RT(BAD CHR), RT(PERIO), RT(NO RSP)
WRITE(2,20) (PRDOUT(2,J),J=5,8)
WRITE(2,20) (DATOUT(2,J),J=5,8)
WRITE (2, *)
WRITE(2,*) SERIAL POSITION INFORMATION: CORRECT KEEP
WRITE(2,*) (KEEPSP(J),J=1,5)
DO 88 IA = 1,5
RA = KEEPSP (IA)
IF (KEEPSP (IA) .NE.0) TIMESP (IA) = TINESP (IA) /RA

88 CONTINUE
WRITE (2, *)
WRITE(2,*) 'SERIAL POSITION INFORMATION: CORRECT TIME
WRITE(2,*) (TIMESP(J),J=1,5)

C
C WRITE OUT DETAILED INFORMATION

IF(NOUT.EQ.0) GO TO 999
WRITE (2, *)
WRITE(2,*) ' KEEP INFORMATION
DO 90 IA = 1,NCHR
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WRITE(2,12) (KEEP(IA,J),J=1,45)
90 CONTINUE

WRITE (2, *)
WRITE(2,*) 'KILL INFORMATION
DO 100 IA =1,NCHR

WRITE(2,10) IA, (KILL(IA,J) ,J=1,8)
100 CONTINUE

WRITE (2, *)
WRITE(2,*) 'CONFUSION INFORMATION FROM SIMULATION
DO 105 IA = 1,NCHR
RSUM = 0.
DO 110 lB = 1,NCHR
RSUM = CONFUS(IA,IB) + RSUM

110 CONTINUE
RNUM = CONFUS(IA, IA)
IF(RSUM.NE.0) THEN

RPER = RNUM/RSUM
WRITE (2,14) IA,RPER, (CONFUS (IA,J) ,J=1,NCHR)

ELSE
WRITE(2,*) IA,' RSUM = 0: NO CHARACTERS SENT OR ALL BUMPED

END IF
105 CONTINUE

WRITE(2,*)
WRITE(2,*) ' RESPONSE TIME INFORMATION
DO 210 IA = 1,NCHR
WRITE(2,16) IA, (TIME(IA,J),J=1,NCHR)

210 CONTINUE
999 CONTINUE
C
C PERFORM CHECKS ON COMPUTATIONS
C CHECK 1

NTOT = 0
DO 300 IA = 1,NCHR
DO 300 lB = 1,NCHR
NTOT = CONFUS(IA,IB) + NTOT

300 CONTINUE
IF(NTOT.NE.(JKEEP + JKILL - KPD - KPB - NPER)) THEN

WRITE (2, *)
WRITE(2,*) ' CHECK 1 PROBLEMS: CONFUS SUM NE KEEP + KILL-
WRITE(2,*) ' KILLPERBUFDECAY - KILLPERBUFBUb4P - # REC PER'
WRITE(2,*) ' ',NTOT,JKEEP,JKILL,KPD,KPB,NPER
WRITE (5, *)
WRITE(5,*) ' CHECK 1 PROBLEMS: CONFUS SUM NE KEEP + KILL-
WRITE(5,*) 'KILLPERBUFDECAY - KILLPERBUFBUMP - # REC PER'
WRITE(5,*) '',NTOT,JKEEP,JKILL,KPD,KPB,NPER

ELSE
WRITE (5, *)
WRITE(5,*) ' CHECK 1 OK:
WRITE(5,*) ' CONFUS = KEEP + KILL - KPD - KPB - NPER'
WRITE(5,*) ' ',NTOT,JKEEP,JKILL,KPD,KPB,NPER

END IF
C PERFORM CHECKS ON COMPUTATIONS
C CHECK 2

IF(JNCNT.NE. (JKEEP+JKILL)) THEN
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WRITE (2, *)
WRITE(2,*) ' CHECK 2 PROBLEMS: NUMBER OF STIMULI IN STREAM
WRITE(2,*) ' NOT EQUAL TO KEEP + KILL COUNT
WRITE (2, *) ' ,JNCNT, JKEEP, JKILL
WRITE (5, *)
WRITE(5,*) ' CHECK 2 PROBLEMS: NUMBER OF STIMULI IN STREAM
WRITE(5,*) ' NOT EQUAL TO KEEP + KILL COUNT
WRITE(5,*) ' ',JNCNT,JKEEP,JKILL

ELSE
WRITE (5, *)
WRITE(5,*) ' CHECK 2 OK: KEEP + KILL = # CHAR IN INPUT '
WRITE(5,*) ' ',JNCNT,JKEEP,JKILL

END IF
C PERFORM CHECK ON COMPUTATIONS
C CHECK 3

IF (JNCNT.NE. (JKEEPS+JKILL+JOFF)) THEN
WRITE (2, *)
WRITE(2,*) ' CHECK 3 PROBLEMS: NUMBER OF STIMULI IN STREAM
WRITE(2,*) ' NOT EQUAL TO CORRECT •- KILL + OFF DIAG KEEP
WRITE(2,*) ' ',JNCNT,JKEEPS,JKILL,JOFF
WRITE (5, *)
WRITE(5,*) ' CHECK 3 PROBLEMS: NUMBER OF STIMULI IN STREAM
WRITE(5,*) ' NOT EQUAL TO CORRECT + KILL + OFF DIAG KEEP
WRITE (5,*) ' ',JNCNT, JKEEPS, JKILL, JOFF

ELSE
WRITE (5, *)
WRITE(5,*) ' CHECK 3 OK: NUMBER OF STIMULI IN STREAM
WRITE(5,*) ' IS EQUAL TO CORRECT + KILL + OFF DIAG KEEP
WRITE(5,*) ' ',JNCNT,JKEEPS,JKILL,JOFF

END IF
RETURN
END
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SUBROUTINE SSTIM
C
C
C
C
C

SUBROUTINE SSTIM (CHRBUF, STIMBUF, NGROUP, NREP, NSTIM, NOUT)
INTEGER CHRBUF (410) ,STIMBUF(820)
INTEGER NGROUP, NREP, NSTIM

10 FORMAT(1X, 2013)
JCHR = 0
DO 100 IA = 1,NSTIM,2*NGROUP
DO 120 lB = IA,IA+2*NGROUP-1,2
JCHR = JCHR + 1
STIMBUF(IB) = CHRBUF(JCHR)
STIMBUF(IB+1) = 42

120 CONTINUE
STIMBUF (IA + 2*NGROUP -1) = 43

100 CONTINUE
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' DATA IN CHRBUF AT START: ONLY FIRST 10
WRITE(2,10) (CHRBUF(J) ,J=1,10)
WRITE (2, *)
WRITE(2,*) ' DATA IN STIMBUF AT START: ONLY FIRST 20'
WRITE(2,10) (STIMBUF(J) ,J=1,20)

END IF
RETURN
END
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SUBROUTINE SMINI
C
C
C
C
C

SUBROUTINE SMINI (STATEC, STATED, INFO, KROW, KCOL,NOUT)
INTEGER NOUT
INTEGER INFO(2,4)
INTEGER STATEC (30,4)
REAL STATED(30,4)
INTEGER KROW,KCOL
RMIN = 10000000.
DO 100 IA = 1,4
IF(INFO(1,IA) .GT.0) THEN

DO 120 IB = 1, INFO(1,IA)
IF(RMIN.GT.STATED(IB,IA)) THEN

KROW = IB
KCOL = IA
RMIN = STATED (KROW,KCOL)

END IF
120 CONTINUE

END IF
100 CONTINUE

IF(NOUT.EQ.1) THEN
WRITE(2,*) ' MIN DURATION IN STATE ',KROW,KCOL,RMIN

END IF
RETURN
END
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SUBROUTINE SSUB
C
C
C
C
C

SUBROUTINE SSUB (STATEC, STATED, INFO, KROW, KCOL)
INTEGER INFO(2,4)
INTEGER STATEC (30, 4)
REAL STATED (30,4)
INTEGER KROW,KCOL

2.0 FORMAT(1X,414,1OF1O.4)
RMIN = STATED (KROW,KCOL) !THE MINIMUM FOUND IN SMIN
DO 100 IA = 1,4
IF(INFO(1,IA).EQ.O) GOTO 100
DO 100 lB = 1,INFO(1, IA)
STATED(IB,IA) = STATED(IB,IA) -RMIN

100 CONTINUE
RETURN
END
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SUBROUTINE SARR
C
C
C
C
C

SUBROUTINE SARR (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,
C KILL, SEED, STIMDUR, ALPHA, BETA, STATEX, STATEY, STATEP,
C NOUT, DATLAT, KCOPB)
INTEGER KROW,KCOL
INTEGER NELEM
INTEGER NOUT
INTEGER*4 SEED
INTEGER INFO (2, 4)
INTEGER STATEC (30, 4) ,STATEX(30,4)
INTEGER STATEP (30, 4)
INTEGER STIMBUF (820)
INTEGER KILL(41,8)
REAL ALPHA (2, 4) BETA (2, 4)
REAL DATLAT(41,45)
REAL STATED (30,4) ,STATEY (30,4)
REAL STIMDUR(43)

10 FORMAT(lX,414,10F10.4)
C MAKE SURE THAT SARR IS CALLED WHEN IT WAS POSSIBLE FOR ARRIVAL TO
C HAVE HAD MINIMUM DURATION

IF(INFO(1,l) .EQ.0) THEN
WRITE(2,*) ' NOT POSSIBLE FOR MINIMUM TO HAVE BEEN ARRIVAL

END IF
C CHANGE ARRIVAL STATES

JTEMPC = STATEC(1,1)
JTEMPP = STATEP(l,l)
IF(INFO(2,1).EQ.0) THEN !NO MORE ARRIVALS

STATEC(1,1) = 0
STATED(l,l) = 0.
STATEP(1,1) = 0
STATEX(1,1) = 0
STATEY(1,1) = 0.

END IF
IF (INFO (2,1) .GT.0) THEN !MORE ARRIVALS

STATEC(1,1) = STIMBUF (NELEM)
STATED(1, 1) = STIMDUR (STIMBUF (NELEM))
IF (STATEC (1,1).EQ.43) THEN

STATEP(1,1) = 0
END IF
IF (STATEC (1,1).LT.42) THEN

STATEP(1,l) = STATEP(1,1) + 1
END IF
STATEX(1,1) = STATEC(l,l)
STATEY (1, 1) = 0.

END IF
C CHANGE ARRIVAL INFORMATION

IF (INFO (2, 1) .EQ.0) THEN
INFO(l,1) = 0

END IF
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IF(INFO(2,1) .GT.O) THEN
INFO(2,1) = INFO(2,1) - 1

END IF
C CHANGE PERCEPTION STATES

IF(JTEMPC.GE.42) THEN !NO CHANGE NEEDED IF CHAR ON
C ARRIVAL
SERVER IS BLANK

GOTO 999
END IF

C
C CODE BELOW USED TO MODEL BEHAVIOR OF OPERATORS WHO CAN WORK ON
C AT MOST ONE STIMULUS AT A TIME, I.E., OF QEPRATORS WHO
C CANNOT COPY BEHIND

IF(KCOPB.EQ.O) THEN
RSTAT = INFO(1,2) + INFO(1,3) + INFO(1,4)
IF(RSTAT.GT.Q) THEN !AT LEAST 1 SERVER OCCUPIED

KILL(JTEMPC,2) = KILL(JTEMPC,2) + 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) 'KILLED

CHARACTER: PER BUFF FULL '

C
JTEMPC, KILL (JTENPC, 2)

END IF
GOTO 999

END IF
END IF
IF(INFO(1,2).EQ.0) THEN !ROOM ON PER SERVER

STATEC(1,2) = JTEMPC
STATEX(1,2) = JTEMPC
STATEP(1,2) = JTEMPP
STATED (1,2) = SGANMA (ALPHA, BETA, DATLAT, SEED,

C 1, 2, 1, JTENPC)
STATEY(1,2) = STATED(1,2)

END IF
IF((INFO(1,2).GT.O).AND.(INFO(1,2).LT.INFO(2,2))) THEN

C !MORE ROOM IN PER BUFFER
STATEC(INFO(1,2)+1,2) = JTEMPC
STATEX(INFO(1,2)+1,2) = JTEMPC
STATEP(INFO(1,2)+1,2) = JTEMPP
STATED (INFO(1,2) +1,2) = SGAMMA(ALPHA,BETA,DATLAT,

C SEED,2,2,1,JTEMPC)
STATEY(INFO(1,2)+1,2) = STATED(1,2)

END IF
IF(INFO(1,2).GE.INFO(2,2)) THEN !NO MORE ROOM IN BUFFER

KILL(JTEMPC,2) = KILL(JTEMPC,2) + 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) 'KILLED CHARACTER: PER BUFF FULL '

C JTEMC, KILL (JTEMPC, 2)
END IF

END IF
C CHANGE PERCEPTION INFORMATION

IF(INFO(1,2) .LT.INFO(2,2)) THEN
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INFO(1,2) = INFO(1,2) + 1
END IF

999 CONTINUE
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' INPUT AFTER SARR CHANGES
DO 910 IA = 1,2
WRITE(2,10) (INFO(IA,J),J=1,4)

910 CONTINUE
DO 900 IA = 1,2
WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)

900 CONTINUE
DO 902 IA = 1,2
WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)

902 CONTINUE
DO 904 IA = 1,2
WRITE(2,10) (STATEP(IA,J),J=1,4)

904 CONTINUE
END IF
RETURN
END
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SUBROUTINE SPER
C
C
C
C
C

SUBROUTINE SPER (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,
C KILL, CONMAT, CONFUS, SEED, ALPHA, BETA, STATEX, STATEY, STATEP,
C NOUT, NPER, RCRIT, DATLAT)
INTEGER KROW,KCOL
INTEGER NELEM
INTEGER NOUT
INTEGER NPER
INTEGER*4 SEED
INTEGER CONFUS (41,41)
INTEGER INFO(2,4)
INTEGER STATEC (30,4) , STATEX (30,4)
INTEGER STATEP (30,4)
INTEGER STIMBUF (820)
INTEGER KILL(41,8)
REAL RCRIT
REAL ALPHA(2,4),BETA(2,4)
REAL DATLAT(41,45)
REAL STATED(30,4),STATEY(30,4)
REAL CONMAT(41,45)

10 FORMAT(1X,414,10F10.4)
C MAKE SURE THAT SPER IS CALLED WHEN IT WAS POSSIBLE FOR PERCEPTION TO
C HAVE HAD MINIMUM DURATION

IF(INFO(1,2).EQ.0) THEN
WRITE(2,*) ' NOT POSSIBLE FOR MINIMUM TO HAVE BEEN PERCEPTION '

END IF
C INITIALIZE VARIABLES

JTEMPC = STATEC(1,2)
JTEMPX = STATEX(1,2)
JTEMPP = STATEP(1,2)
RTEMPY = STATEY(1,2)

C IF THE PERCEPTION TIME IS LONG, THEN A PER TOD WILL BE RECORDED
IF (RTEMPY.GT.RCRIT) THEN

JTEMPC = 44
NPER = NPER + 1

END IF
C IF PERCEPTION TIME IS LESS THAN RCRIT, THEN GOTO CONFUSION MATRIX
C TO CREATE PERCEPTUAL ERRORS, E.G., IF THE CODE -...
C IS ON THE PERCEPTION SERVER, THEN WTIH SOME PROBABILITY
C THE CODE MIGHT BE PERCEIVED AS, SAY,

IF (RTEMPY.LE.RCRIT) THEN
CALL SPERERR (JTEMPC, CONMAT, CONFUS, SEED)

END IF
C CHANGE PERCEPTION STATES

IF(INFO(1,2).EQ.1) THEN !NOTHING IN PERCEPTION BUFFER
STATEC(1,2) = 0
STATED(1,2) = 0.
STATEX(1,2) = 0
STATEP(1,2) = 0
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STATEY (1, 2) = 0.
END IF
IF(INFO(1,2) .GT.1) THEN !MORE IN

PERCEPTION BUFFER
STATEC(1,2) = STATZIC(2,2) !ASSIGN DURATION PERC SERVER
STATED(1,2) = SGAt'ThA(ALPHA,BETA,DATLAT,SEED,

C 1,2,2,jTEMPX)
STATEX(1,2) = STATEX(2,2)
STATEP(1,2) = STATEP(2,2)
STATEY(1,2) = STATEY(2,2) + STATED(1,2)
DO 100 IA = 2,INFO(1,2)
STATEC(!A,2) = STATEC(IA+1,2)
STATED(IA,2) = STATED(IA-t1,2)
STATEX(IA,2) = STATEX(IA+1,2)
STATEP(IA,2) = STATEP(ILI-1,2)
IF(IA.LT.INFO(1,2)) THEN

STATEY(IA,2) = STATEY(IA+1,2) + STATED)(1,2)
ELSE

STATEY(IA,2) = 0.
END IF

100 CONTINUE
END IF

C CHANGE PERCEPTION INFORMATION
INFO(1,2) = INFO(1,2) -1

C CHANGE RECOGNITION STATES
IF(INFO(1,3).LT.INFO(2,3)) THEN !MORE ROOM IN RECOG BUFFER

STATEC(INFO(1,3)+1,3) = JTEMPC !ASSIGN DURATIONS
STATEX (INFO (., 3) +1,3) = JTE14PX
STATEP(.CNFO(1,3)+1,3) = JTEMPP
IF(INFO(1,3) .EQ.O) THEN
STATED (1,3) = SGAM4MA(ALPHA,BETA,DATLAT, SEED,

C 1, 3,2, JTEDPX)
ELSE
STATED(INFO(1,3)+1,3) = SGAMMA(ALPHA,BETA,DA-LAT,

C SEED,2,3,2,JTEMPX)
END IF
STATEY(INFO(1,3)+1,3) = RLZ~iPiY + STATED(1,3)

END IF
IF(INFO(1,3).GE.INFO(2,3)) THEN !NO MORE ROOM IN RECOG BUFFER

KILL(JTEMPX,3) = KILL(JTEMPY.,3) + 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' KILLED CHARACTER: REC BUFF FULL '

C JTEMPX, KYLL (JTEMPX, 3)
END IF

END IF
C CHANGE RECOGNITION INFORMATION

IF(INFO(1,3) .LT.INFO(2,3)) THEN
INFO(1,3) = INFO(1,3) + 1

END IF
999 CONTINUE

IF(NOUT.EQ.1) THEN
WRITE (2, *)
WRITE(2,*) ' INPUT AFTER SPER CHANGES
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DO 910 IA = 1,2
WRITE(2,10) (INFO(IA,J),J=1,4)

910 CONTINUE
DO 900 IA = 1,2
WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)

900 CONTINUE
DO 902 IA = 1,2
WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)

902 CONTINUE
DO 904 IA = 1,2
WRITE (2, 10) (STATEP (IA, J) , J=l, 4)

904 CONTINUE
END IF
RETURN
END
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SUBROUTINE SREC
C
C
C
C
C

SUBROUTINE SREC (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,
C KILL, SEED, ALPHA, BETA, STATEX, STATEY, STATEP, NOUT,
C DATLAT)
INTEGER KROW,KCOL
INTEGER NELEM
INTEGER NOUT
INTEGER*4 SEED
INTEGER INFO (2, 4)
INTEGER STATEC (30,4), STATEX (30,4)
INTEGER STATEP (30,4)
INTEGER STIMBUF (820)
INTEGER KILL(41,8)
REAL ALPHA(2,4) ,BETA(2,4)
REAL DATLAT (41, 45)
REAL STATED (30, 4) ,STATEY(30,4)

10 FORMAT(1X,414,10F10.4)
C MAKE SURE THAT SREC IS CALLED WHEN IT WAS POSSIBLE FOR PERCEPTION TO
C HAVE HAD MINIMUM DURATION

IF (INFO (1,3) .EQ.0) THEN
WRITE (2, *)
WRITE(2,*) 'NOT POSSIBLE FOR MINIMUM TO HAVE BEEN RECOGNITION

END IF
C CHANGE RECOGNITION STATES

JTEMPC = STATEC(1,3)
JTEMPX = STATEX(1,3)
JTEMPP =STATEP(1,3)
RTEMPY =STATEY(1,3)
IF(INFO(1,3).EQ.1) THEN !NOTHING IN RECOGNITION BUFFER

STATEC(1,3) = 0
STATED(1,3) = 0.
STATEX(1,3) = 0
STATEP(1,3) = 0
STATEY(1,3) = 0.

END IF
IF(INFO(1,3) .GT.1) THEN !MORE IN

RECOGNITION BUFFER
STATEC(1,3) = STATEC(2,3) !ASSIGN DURATION TO RECOG SERVER
STATED (1,3) = SGAMMA(ALPHA,BETA,DATLAT,SEED,

C 1, 3,3, JTEMPX)
STATEX(1,3) = STATEX(2,3)
STATEP(1,3) = STATEP (2, 3)
STATEY(1,3) = STATEY(2,3) + STATED(1,3)
DO 100 IA = 2, INFO (1,3)
STATEC(IA,3) = STATEC(IA+1,3)
STATED(IA,3) = STATED (IA+1,3)
STATEX(IA,3) = STATEX(IA+1,3)
STATEP(IA,3) = STATEP(IA+1,3)
IF(IA.LT.INFO(1,3)) THEN
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STATEY(IA,3) = STiATEY(IA+1,3) + STATED(1,3)
ELSE

STATEY(IA,3) =0.
END IF

100 CONTINUE
END IF

C CHANGE RECOGNITION INFORMATION
INFO(1,3) = INFO(1,3) -1

C CHANGE EXECUTION STATES
IF (INFO (1,4) .EQ.0) THEN !ROOM ON EXEC SERVER

STATEC(1,4) = JTEMPC
STATEX(1,4) = JTEMPX
STATEP(1,4) = JTEMPP
STATED (1,4) = SGAMMA(ALPHA,BETA,DATLAT,SEED,

C 1, 4, 3, JTEMPX)
STATEY(1,4) = RTEMPY + STATED (1,4)

END IF
IF((INFO(1,4).GT.0).AND.(INFO(1,4).LT.INFO(2,4))) THEN

C !MORE ROOM IN EXEC BUFFER
STATEC(INFO(1,4)+1,4) = JTEMPC
STATEX(INFO(1,4)+1,4) = JTEMPX
STATEP(INFO(1,4)+1,4) = JTEMPP
STATED(INFO(1,4)+1,4) = SGAMMA(ALPHA,BETA,DATLAT,

C SEED, 2,4, 3, JTEMPX)
STATEY(INFO(1,4)+1,4) = RTEMPY 4 STATED(1,4)

END IF
IF(INFO(1,4).GE.INFO(2,4)) THEN !NO MORE ROOM IN EXEC BUFFER

KILL(JTEMPX,4) = KILL(JTEMPX,4) 4 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' KILLED CHARACTER: EXEC BUFF FULL '

C JTEMPX, KILL (JTEMPX, 4)
END IF

END IF
C CHANGE EXECUTION INFORMATION

IF(INFO(1,4) .LT.INFO(2,4)) THEN
INFO(1,4) = INFO(1,4) + 1

END IF
999 CONTINUE

IF(NOUT.EQ.1) THEN
WRITE (2, *)
WRITE(2,*) ' INPUT AFTER SREC CHANGES'
DO 910 IA =1,2
WRITE(2,10) (INFO(IA,J),J=1,4)

910 CONTINUE
DO 900 IA -1,2
WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)

900 CONTINUE
DO 902 IA -1,2
WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)

902 CONTINUE
DO 904 IA - 1,2
WRITE(2,10) (STATEP (IA,J) ,J=1,4)

904 CONTINUE
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END IF
RETURN
END
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SUBRUOTINE SEXE
C
C
C
C
C

SUBROUTINE SEXE (STATEC, STATED, INFO, KROW, KCOL, STIMBUF, NELEM,
C KEEP,KILL,ALPHA,BETA, STATEX,STATEY,TIME, STATEP,
C KEEPSP, TIMESP,NOUT,DATLAT)
INTEGER KROW,KCOL
INTEGER NELEM
INTEGER NOUT
INTEGER INFO(2,4)
INTEGER STATEC (30, 4) ,STATEX(30,4)
INTEGER STATEP (30, 4)
INTEGER STIMBUF (820)
INTEGER KILL(41,8)
INTEGER KEEP (41, 46)
INTEGER KEEPSP (5)
REAL ALPHA(2, 4),BETA(2, 4)
REAL DATLAT (41, 45)
REAL STATED (30,4), STATEY (30,4)
REAL TIME (41,45)
REAL TIMESP (5)

10 FORMAT(iX,414,10F10.4)
C MAKE SURE THAT SEXE IS CALLED WHEN IT WAS POSSIBLE FOR PERCEPTION TO
C HAVE HAD MINIMUM DURATION

IF(INFO(1,4).EQ.0) THEN
WRITE (2, *)
WRITE(2,*) ' NOT POSSIBLE FOR MINIMUM TO HAVE BEEN EXECUTION

END IF
C
C SAVE INFORMATION ON CHARACTERS WHICH MAKE IT THROUGH RESPONSE
C AND INCREMENT RUNING RESPONSE TIMES

KEEP(STATEX(1,4),STATEC(1,4)) = KEEP(STATEX(1,4),STATEC(1,4)) + 1
TIME(STATEX(1,4),STATEC(I,4)) = TIME(STATEX(1,4),STATEC(1,4)) +
C STATEY(1,4)

C
C SAVE SERIAL POSITION INFORMATION FOR CHARACTERS WHICH ARE CORRECTLY
C ENTERED

IF(STATEX(1,4) .EQ.STATEC(1,4)) THEN
KEEPSP(STATEP(1,4)) = KEEPSP(STATEP(1,4)) + 1
TIMESP(STATEP(1,4)) = TIMESP(STATEP(1,4)) + STATEY(1,4)

END IF
C CHANGE EXECUTION STATES

IF(INFO(1,4).EQ.1) THEN !NOTHING IN EXECUTION BUFFER
STATEC(1,4) = 0
STATED(1,4) = 0.
STATEX(1,4) = 0
STATEP(1,4) = 0
STATEY(1,4) = 0.

END IF
IF (INFO (1, 4) . GT. 1) THEN !MORE IN

EXECUTION BUFFER
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STATEC(1,4) =STATEC(2,4)
STATED (1,4) = SGAM4A(ALPHA,BETA,DATLAT, SEED,

C 1,4,4,JTENPX)
STATEX(1,4) =STATEX(2,4)
STATEP(1,4) = STATEP(2,4)
STATEY(1,4) = STATEY(2,4) + STATED(1,4)
DO 100 IA = 2,INFO(1,4)
STATEC(IA,4) = STATEC(IA+1,4)
STATED(IA,4) = STATED(IA+1,4)
STATEX(IA,4) = STATEX(IA+1,4)
STATEP(IA,4) = STATEP(IA+1,4)
IF(IA.LT.INFO(1,4)) THEN

STATEY(IA,4) = STATEY(IA+1,4) + STATED(1,4)
ELSE

STATEY(IA,4) =0.
END IF

100 CONTINUE
END IF

C CHANGE EXECUTION INFORMATION
INFO(1,4) =INFO(1,4) -1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE (2, *) ' INPUT AFTER SEXE CHANGES'
DO 910 IA = 1,2
WRITE(2,10) (INFO (IA, J) , J=1,4)

910 CONTINUE
DO 900 IA = 1,2
WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)

900 CONTINUE
DO 912 IA = 1,2
WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)

912 CONTINUE
DO 914 IA = 1,2
WRITE(2,10) (STATEP(IA,J) ,J=1,4)

914 CONTINUE
END IF
RETURN
END
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SUBROUTINE SPERBUF
C
C
C
C
C

SUBROUTINE SPERBUF (STATEC, STATED, INFO, KROW, KCOL, KILL, STATEX,
C STATEY, STATEP, NOUT)
INTEGER INFO(2,4)
INTEGER KROW, KCOL
INTEGER NOUT
INTEGER KILL(41,8)
INTEGER STATEC(30,4) ,STATEX(30,4)
INTEGER STATEP (30, 4)
REAL STATED (30,4) ,STATEY (30,4)

C
C FORMAT STATEMENTS
10 FORMAT(1X,4I4,J.X,10F1O.4)
C
C PLACE DECAYED STIMULUS IN KILL

KILL(STATEX(KROW,KCOL),6) = KILL(STATEX(KROW,KCOL),6) + 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' KILL DECAY IN PERCEPTION ',STATEX(KROW,KCOL)

END IF
C
C BEGIN BUFFER. REORGANIZATION

DO 100 IA =KROW, INFO (1, 2)
STATEC(IA,2) = STATEC(IA+1,2)
STATED(IA,2) = STATED(IA+1,2)
STATEX(IA,2) = STATEX(IA+1,2)
STATEP(IA,2) - STATEP(IA+1,2)
STATEY(IA,2) =STATEY(IA+1,2)

100 CONTINUE
C
C DECREMENT PERCEPTION INFO

INFO (1, 2) =INFO (1, 2) - 1
C
C OUTPUT

IF(NOUT.EQ.1) THEN
WRITE (2, *)
WRITE(2,*) 'OUTPUT IN STATE AFTER PERCEPTION BUFFER DECAY
DO 210 IA = 1,2

210 WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)
DO 212 IA = 1,2

212 WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)
DO 214 IA = 1,2

214 WRITE (2, 10) (STATEP (IA, J) , J1,4)
END IF
RETURN
END
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SUBROUTINE SRECBUF
C
C
C
C
C

SUBROUTINE SRECBUF (STATEC, STATED, INFO, KROW, KCOL, KILL, STATEX,
C STATEY, STATEP,NOUT)
INTEGER INFO(2,4)
INTEGER KROW,KCOL
INTEGER NOUT
INTEGER KILL(41,8)
INTEGER STATEC(30,4) ,STATEX(30,4)
INTEGER STATEP (30,4)
REALJ STATED (30,4) ,STATEY(30,4)

C
C FORMAT STATEMENTS
10 FOPRMAT(1X,4I4,lX,l0F10.4)
C
C PLACE DECAYED STIMULUS IN KILL

JA = STATEX(KROW,KCOL)
KILL(JA,7) = KILL(JA,7) + 1
IF(NOUT.EQ.hI THEN

WRITE (2, *)
WRITE(2,*) ' KILL DECAY IN RECOG ',STATFX(KROW,KCOL)

END IF
C
C BEGINNING OF REORDERING OF RECOGNITION BUFFER

DO 100 IA = KROW,INFO(1,3)
STATEC(IA,3) = STATEC(IA+1,3)
STATED(IA,3) = STATED(IA+1,3)
STATEX(IA,3) = STATEX(IA+l,3)
STATEP(IA,3) = STATEP(IA+1,3)
STATEY(IA,3) = STATEY(IA+1,3)

100 CONTINUE
C
C DECREMENT RECOGNITION INFO

INFO (1, 3) = INFO (1, 3) - 1
C
C OUTPUT

IF(NOUT.EQ.1) THEN
WRITE (2, *)
WRITE(2,*) ' OUTPUT IN STATE AFTER RECOGNITION BUFFER DECAY
DO 210 IA =1,2

210 WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)
DO 212 IA = 1,2

212 WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)
DO 214 IA = 1,2

214 WRITE (2, 10) (STATEP (IA, J) ,J=1, 4)
END IF
RETURN
END
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SUBROUTINE SEXEBUF
C
C
C
C
C

SUBROUTINE SEXEBUF (STATEC, STATED, INFO, KROW, KCOL, KILL, STATEX,
C STATEY, STATEP, NOUT)
INTEGER INFO(2,4)
INTEGER KROW,KCOL
INTEGER NOUT
INTEGER KILL(41,8)
INTEGER STATEC(30,4),STATEX(30,4)
INTEGER STATEP (30, 4)
REAL STATED (30, 4) ,STATEY (30, 4)

C
C FORMAT STATEMENTS
10 FORMAT(1X,4I4,10F10.4)
C
C PLACE DECAYED STIMULUS IN KILL

KILL(STATEX(KROW,KCOL),B) = KILL(STATEX(KROW,KCOL),8) + 1
IF(NOUT.EQ.1) THEN

WRITE (2, *)
WRITE(2,*) ' KILL DECAY IN EXECUTION ',STATEX(KROW,KCOL)

END IF
C
C BEGIN BUFFER REORGANIZATION

DO 100 IA = KROW,INFO(1,4)
STATEC(IA,4) =STATEC(IA+1,4)
STATED(IA,4) = STATED(IA+1,4)
STATEX(IA,4) = STATEX(IA+1,4)
STATEP(IA,4) = STATEP(IA+1,4)
STATEY(IA,4) = STATEY(IA+1,4)

100 CONTINUE
C
C DECREMENT EXECUTION INFO

INFO (1, 4) =INFO ('.,4) - I
C
C OUTPUT

IF (NOUT.EQ.1) THEN
WRITE (2, *)
WRITE(2,*) ' OUTPUT IN STATE AFTER EXECUTION BUFFER DECAY
DO 210 IA = 1,2

210 WRITE(2,10) (STATEC(IA,J),J=1,4), (STATED(IA,J),J=1,4)
DO 212 IA = 1,2

212 WRITE(2,10) (STATEX(IA,J),J=1,4), (STATEY(IA,J),J=1,4)
DO 214 IA = 1,2

214 WRITE(2,10) (STATEP(IA,J),J=1,4)
END IF
RETURN
END
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SUBROUTINE SPERERR

C
C
C
C
C

SUBROUTINE SPERERR (JTEMPC, CONMAT, CONFUS, SEED)
INTEGER JTEMPC
INTEGER*4 SEED
INTEGER CONFUS(41,41)
REAL CONMAT (41, 45)
RA = RAN (SEED)
DO 100 IA = 1,41
IF (RA.LE.CONMAT (JTEMPC, IA)) THEN

CONFUS(JTEMPC,IA) = CONFUS(JTEMPC,IA) + I
JTEMPC = IA
GOTO 110

END IF
100 CONTINUE
110 CONTINUE

RETURN
END
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SUBROTJT* iE SGPM
C
C
C
C
C

SUBROUTINE SGPM(STINDUR, INTERC, INTERG,NGPM)
INTEGER NGPM
REAL INTERC(15),:NTERG(15)
REAL STIMDUR("3)
STIMDUR(42, = INTERC(NGPM-5)
STIbMDUR(43) = INTERG(NGPM-5)
RETURN
END

C
C
C
C
C

REAL FUJNCTION SGAMMA (ALPHA1,BETA1, DATLAT, SEED, JROW, JCOL,
C JPRO,JCHR)
INTEGER*4 SEED
REAL ALPHA,BETA
REAL ALPHAl (2, 4) ,BETA'I(2, 4)
REAL A,B,D,Q,U1,U2,THETA,W,V,Y,Z
REAL DATLAT (41, 45)
ALPHA =ALPHA1 (JROW, JCOL)
BETA =BETA1(JROW,JCOL)

C ASSIGNING PERCEPTION TIME: PERCEPTION TIME = OBSERVED CORRECT TIME-
C RECOGNITION TIME - EXECUTION TIME. BETA(1,2) (VARIANCE FACTOR)
C ASSIGNED BEFOREHAND. ONLY A MATTER OF ASSIGNING ALPHA
C SO THAT ABOVE EQUAITON HOLDS

IF((JROW.EQ.1) .AND. (JCOLU.EQ.2)) THEN
RSUB =ALPHA1(1,3)*BETA1(1,3) 4 ALPHA1(1,4)*BETA1(1,4)
ALPHA =(DATLAT(JCHR,42) - RSUB)/BETA

END IF
A = l./((2.*ALPHA - 1)*5
B = ALPHA - LOGO4.)
Q = ALPHA + 1./A
THETA -4.5
D =1. + LOG(THETA)

10 Ul RAN (SEED)
IF(Ul.LE.0) GO TO 10
U2 RAN(SEED)
V =A*LOG(Ul/ (1. - Ul))
Y =ALPHA*EXP(V)
Z =U1*U1*U2
W =B + Q*V - Y
IF((W + D - THETA*Z).GE.0) THEN

SGAMMA = Y*BETA
RETURN

END IF
IF(W.GE.LOG(Z)) THEN

SGAMMA - Y*BETA
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RETURN
ELSE

GO TO 10
END IF
RETURN
END
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SUBROUTINE SZERO
C
C
C
C
C

SUBROUTINE SZERO (CONFUS, NCHR, INFO, NCNT, KEEP, KEEPSP, KILL,
C STATEC, STATEP, STATEX, STATED, STATEY, TIME, TIMESP,
C NPER)
INTEGER NCHR
INTEGER NCNT
INTEGER NPER
INTEGER CONFUS (41, 41)
INTEGER INFO (2, 4)
INTEGER KEEP (41, 46)
INTEGER KEEPSP (5)
INTEGER KILL(41,8)
INTEGER STATEC (30, 4)
INTEGER STATEP (30,4)
INTEGER STATEX (30,4)
REAL STATED (30,4)
REAL STATEY (30, 4)
REAL TIME(41,45)
REAL TIMESP (5)

C---- NPER
NPER = 0

C---- INFO
INFO(1,1) = 1
INFO(2,1) = NCNT

C - CONFUS
DO 100 IA = 1,NCHR
DO 100 IB = 1,NCHR
CONFUS(IA,IB) = 0

100 CONTINUE
C---- KEEP

DO 105 IA = 1,NCHR
DO 105 IB = 1,45
KEEP(IA,IB) = 0

105 CONTINUE
C ---- KEEPSP

DO 110 IA = 1,5
KEEPSP(IA) = 0

110 CONTINUE
C ---- KILL

DO 120 IA = 1,NCHR
DO 120 IB = 1,8
KILL(IA,IB) = 0

120 CONTINUE
C ---- STATEC,STATEP,STATEX

DO 130 IA - 1,30
DO 130 IB = 1,4
STATEC (IA, IB) - 0
STATEP(IA,IB) = 0
STATEX(IA,IB) = 0
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130 CONTINUE
C IN ORDER TO START SIMULATION, WANT FIRST CHARACTER IN ARRIVAL TO
C BE A BLANK, 42 OR 43 IS OK

STATEC (1, 1) = 42
STATEX(1,1) = 42

C STATED,STATEY
DO 140 IA = 1,30
DO 140 !B = 1,4
STATED(IA,IB) = 0.
STATEY(IA, IB) = 0.

140 CONTINUE
C IN ORDER TO START SIMULATION, NEED TO ASSIGN A DURATION TO BLANK
C SO THAT SMINI DOESN'T THINK EVERYTHING IS FINISHED

STATED(1,1) = 50.
STATEY(I,I) = 50.

C---- TIME
DO 150 IA = 1,NCHR
DO 150 IB = 1,45
TIME(IA,IB) = 0.

15C CONTINUE
C ---- TIMESP

DO 160 IA = 1,5
TIMESP(IA) = 0.

160 CO(TINUE
RETURN
END
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